Filter Results:
(331)
Show Results For
- All HBS Web
(118,359)
- Faculty Publications (331)
Show Results For
- All HBS Web
(118,359)
- Faculty Publications (331)
- 2020
- Working Paper
Is Accounting Useful for Forecasting GDP Growth? A Machine Learning Perspective
We provide a comprehensive examination of whether, to what extent, and which accounting variables are useful for improving the predictive accuracy of GDP growth forecasts. We leverage statistical models that accommodate a broad set of (341) variables—outnumbering the... View Details
Keywords: Big Data; Elastic Net; GDP Growth; Machine Learning; Macro Forecasting; Short Fat Data; Accounting; Economic Growth; Forecasting and Prediction; Analytics and Data Science
Datar, Srikant, Apurv Jain, Charles C.Y. Wang, and Siyu Zhang. "Is Accounting Useful for Forecasting GDP Growth? A Machine Learning Perspective." Harvard Business School Working Paper, No. 21-113, December 2020.
- April 2021
- Case
Glass-Shattering Leaders: Ros Atkins
By: Boris Groysberg and Colleen Ammerman
Ros Atkins launched the 50:50 Project on a BBC news program he anchored, deciding with his team to start tracking the gender of the contributors and experts featured on the show. Before long, it was clear that monitoring the data led to increased awareness of a gender... View Details
Keywords: Gender Equality; Allyship; Representation; Leadership; Gender; Equality and Inequality; Media; Analytics and Data Science
Groysberg, Boris, and Colleen Ammerman. "Glass-Shattering Leaders: Ros Atkins." Harvard Business School Case 421-075, April 2021.
- April 2021 (Revised July 2021)
- Case
StockX: The Stock Market of Things (Abridged)
By: Chiara Farronato, John J. Horton, Annelena Lobb and Julia Kelley
Founded in 2015 by Dan Gilbert, Josh Luber, and Greg Schwartz, StockX was an online platform where users could buy and sell unworn luxury and limited-edition sneakers. Sneaker resale prices often fluctuated over time based on supply and demand, creating a robust... View Details
Keywords: Markets; Auctions; Bids and Bidding; Demand and Consumers; Consumer Behavior; Analytics and Data Science; Market Design; Digital Platforms; Market Transactions; Marketplace Matching; Supply and Industry; Analysis; Price; Product Marketing; Product Launch; Apparel and Accessories Industry; Fashion Industry; North and Central America; United States; Michigan; Detroit
Farronato, Chiara, John J. Horton, Annelena Lobb, and Julia Kelley. "StockX: The Stock Market of Things (Abridged)." Harvard Business School Case 621-107, April 2021. (Revised July 2021.)
- 2021
- Working Paper
Hidden Software and Veiled Value Creation: Illustrations from Server Software Usage
By: Raviv Murciano-Goroff, Ran Zhuo and Shane Greenstein
How do you measure the value of a commodity that transacts at a price of zero from an economic standpoint? This study examines the potential for and extent of omission and misattribution in standard approaches to economic accounting with regards to open source... View Details
Keywords: Server Software; Open Source Distribution; Applications and Software; Analytics and Data Science; Economics; Value Creation; Measurement and Metrics
Murciano-Goroff, Raviv, Ran Zhuo, and Shane Greenstein. "Hidden Software and Veiled Value Creation: Illustrations from Server Software Usage." NBER Working Paper Series, No. 28738, April 2021.
- March 2021
- Supplement
Artea (A), (B), (C), and (D): Designing Targeting Strategies
By: Eva Ascarza and Ayelet Israeli
Power Point Supplement to Teaching Note for HBS No. 521-021,521-022,521-037,521-043. This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on... View Details
Keywords: Targeted Advertising; Targeting; Algorithmic Data; Bias; A/B Testing; Experiment; Advertising; Gender; Race; Diversity; Marketing; Customer Relationship Management; Prejudice and Bias; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; Technology Industry; United States
- 2021
- Working Paper
Time Dependency, Data Flow, and Competitive Advantage
Data is fundamental to machine learning-based products and services and is considered strategic due to its externalities for businesses, governments, non-profits, and more generally for society. It is renowned that the value of organizations (businesses, government... View Details
Keywords: Economics Of AI; Value Of Data; Perishability; Time Dependency; Flow Of Data; Data Strategy; Analytics and Data Science; Value; Strategy; Competitive Advantage
Valavi, Ehsan, Joel Hestness, Marco Iansiti, Newsha Ardalani, Feng Zhu, and Karim R. Lakhani. "Time Dependency, Data Flow, and Competitive Advantage." Harvard Business School Working Paper, No. 21-099, March 2021.
- February 2021 (Revised May 2021)
- Case
SafeGraph: Selling Data as a Service
By: Ramana Nanda, Abhishek Nagaraj and Allison Ciechanover
Set in January 2021, the CEO of SafeGraph, a four-year-old startup that sold Data as a Service, looked to the future. His aim was to become the most trusted source for data about a physical place. The company provided points of interest (POI) and foot traffic data on... View Details
Keywords: Data As A Service; Monetization; Pricing; Business Startups; Analytics and Data Science; Consumer Behavior; Analysis; Business Model; Health Pandemics; Information Industry; United States
Nanda, Ramana, Abhishek Nagaraj, and Allison Ciechanover. "SafeGraph: Selling Data as a Service." Harvard Business School Case 821-082, February 2021. (Revised May 2021.)
- February 2021
- Tutorial
Getting Started in RStudio Cloud
By: Chiara Farronato and Caleb Kwon
This video provides an introduction to the free programming language R using an online cloud version of RStudio, which is the most popular editor and interface for writing and executing R code. The video begins by providing a brief background of R and RStudio and... View Details
- February 2021
- Tutorial
T-tests: Theory and Practice
This video provides an introduction to hypothesis testing, sampling, t-tests, and p-values. It provides examples of A/B testing and t-testing to assess whether difference between two groups are statistically significant. This video can be assigned in conjunction with... View Details
- February 2021 (Revised June 2021)
- Case
Bairong and the Promise of Big Data
By: Lauren Cohen, Xiaoyan Zhang and Spencer C.N. Hagist
Bairong CEO Felix Zhang, in launching his credit scoring start-up that incorporates 74,000 variables per individual, found strong initial success. However, the shifting regulatory environment, growing breadth of competitors, difficulties in retaining top talent, and... View Details
Keywords: Fintech; Big Data; Artificial Intelligence; Credit Scoring; Finance; Credit; Business Startups; AI and Machine Learning; Analytics and Data Science; China
Cohen, Lauren, Xiaoyan Zhang, and Spencer C.N. Hagist. "Bairong and the Promise of Big Data." Harvard Business School Case 221-068, February 2021. (Revised June 2021.)
- February 2021
- Technical Note
Probability Distributions
By: Michael Parzen and Paul Hamilton
This technical note introduces students to the concept of random variables, and from there the normal and binomial distributions. After a brief introduction to random variables, the note describes the standard properties of the normal distribution: a single peak, and a... View Details
Parzen, Michael, and Paul Hamilton. "Probability Distributions." Harvard Business School Technical Note 621-704, February 2021.
- February 2021
- Case
Digital Manufacturing at Amgen
By: Shane Greenstein, Kyle R. Myers and Sarah Mehta
This case discusses efforts made by biotechnology (biotech) company Amgen to introduce digital technologies into its manufacturing processes. Doing so is complicated by the fact that the process for manufacturing biologics—or therapeutics made from living cells—is... View Details
Keywords: Digital Technologies; Change; Change Management; Decision Making; Cost vs Benefits; Decisions; Information; Analytics and Data Science; Innovation and Invention; Innovation and Management; Innovation Leadership; Innovation Strategy; Technological Innovation; Jobs and Positions; Knowledge; Leadership; Organizational Culture; Science; Strategy; Information Technology; Technology Adoption; Biotechnology Industry; Pharmaceutical Industry; United States; California; Puerto Rico; Rhode Island
Greenstein, Shane, Kyle R. Myers, and Sarah Mehta. "Digital Manufacturing at Amgen." Harvard Business School Case 621-008, February 2021.
- February 2021 (Revised February 2021)
- Background Note
eGrocery and the Role of Data for CPG Firms
By: Ayelet Israeli, Fedor (Ted) Lisitsyn and Mark A. Irwin
This notes provides information about the eGrocery industry and how traditional CPG companies handle this channel and potential data. It is recommended to use together with a series of exercises entitled: "E-Commerce Analytics for CPG Firms (A), (B), and (C)." View Details
Keywords: Data; Data Analysis; Data Analytics; Data Sharing; CPG; Consumer Packaged Goods (CPG); Delivery Planning; Customer Lifetime Value; Online Channel; Retail; Retail Analytics; Retailing Industry; Ecommerce; Grocery; Optimization; Analytics and Data Science; Analysis; Customer Value and Value Chain; Marketing Channels; E-commerce; Retail Industry; Consumer Products Industry; United States
Israeli, Ayelet, Fedor (Ted) Lisitsyn, and Mark A. Irwin. "eGrocery and the Role of Data for CPG Firms." Harvard Business School Background Note 521-077, February 2021. (Revised February 2021.)
- January 2021 (Revised March 2021)
- Case
THE YES: Reimagining the Future of E-Commerce with Artificial Intelligence (AI)
By: Jill Avery, Ayelet Israeli and Emma von Maur
THE YES, a multi-brand shopping app launched in May 2020 offered a new type of buying experience for women’s fashion, driven by a sophisticated algorithm that used data science and machine learning to create and deliver a personalized store for every shopper, based on... View Details
Keywords: Data; Data Analytics; Artificial Intelligence; AI; AI Algorithms; AI Creativity; Fashion; Retail; Retail Analytics; E-Commerce Strategy; Platform; Platforms; Big Data; Preference Elicitation; Preference Prediction; Predictive Analytics; App Development; "Marketing Analytics"; Advertising; Mobile App; Mobile Marketing; Apparel; Online Advertising; Referral Rewards; Referrals; Female Ceo; Female Entrepreneur; Female Protagonist; Analytics and Data Science; Analysis; Creativity; Marketing Strategy; Brands and Branding; Consumer Behavior; Demand and Consumers; Forecasting and Prediction; Marketing Channels; Digital Marketing; Internet and the Web; Mobile and Wireless Technology; AI and Machine Learning; E-commerce; Digital Platforms; Fashion Industry; Retail Industry; Apparel and Accessories Industry; Consumer Products Industry; United States
Avery, Jill, Ayelet Israeli, and Emma von Maur. "THE YES: Reimagining the Future of E-Commerce with Artificial Intelligence (AI)." Harvard Business School Case 521-070, January 2021. (Revised March 2021.)
- January 2021 (Revised May 2021)
- Case
Amazon Shopper Panel: Paying Customers for Their Data
By: Eva Ascarza and Ayelet Israeli
This case introduces a new Amazon program that has consumers upload their receipts from transactions outside of Amazon, in exchange for money. Through the discussion, the case aims to explore issues in customers’ privacy in the digital age, the value of customers’ own... View Details
Keywords: Data Analytics; Data Privacy; Data Management; "Marketing Analytics"; Marketing Communication; Marketing Research; Data-driven Management; E-Commerce Strategy; Ethical Decision Making; CRM; Consumer Protection; Targeted Advertising; Targeted Policies; Data Ownership; Marketing; Research; Marketing Communications; Analytics and Data Science; Management; Customer Relationship Management; Ethics; E-commerce; Retail Industry; Technology Industry; United States
Ascarza, Eva, and Ayelet Israeli. "Amazon Shopper Panel: Paying Customers for Their Data." Harvard Business School Case 521-058, January 2021. (Revised May 2021.)
- January 2021 (Revised March 2021)
- Supplement
E-Commerce Analytics for CPG Firms (A): Estimating Sales
By: Ayelet Israeli and Fedor (Ted) Lisitsyn
The E-Commerce Analytics group at the traditional CPG firm was in charge of compiling various online sales reports, as well as making data-driven recommendations for sales and marketing tactics. In a series of exercises, students address different data challenges for... View Details
Keywords: Data Analysis; Data Analytics; CPG; Consumer Packaged Goods (CPG); Estimation; Online Channel; Retail Analytics; Retail; Retailing Industry; Data; Data Sharing; Bricks And Mortar; Ecommerce; Analytics and Data Science; Analysis; Sales; Goods and Commodities; Retail Industry; Consumer Products Industry; United States
- January 2021 (Revised March 2021)
- Exercise
E-Commerce Analytics for CPG Firms (A): Estimating Sales
By: Ayelet Israeli and Fedor (Ted) Lisitsyn
The E-Commerce Analytics group at the traditional CPG firm was in charge of compiling various online sales reports, as well as making data-driven recommendations for sales and marketing tactics. In a series of exercises, students address different data challenges for... View Details
Keywords: Data Analysis; Data Analytics; CPG; Consumer Packaged Goods (CPG); Estimation; Online Channel; Retail Analytics; Retail; Retailing Industry; Data; Data Sharing; Bricks And Mortar; Ecommerce; Direct-to-consumer; DTC; Analytics and Data Science; Sales; Marketing; E-commerce; Retail Industry; Consumer Products Industry; United States
Israeli, Ayelet, and Fedor (Ted) Lisitsyn. "E-Commerce Analytics for CPG Firms (A): Estimating Sales." Harvard Business School Exercise 521-078, January 2021. (Revised March 2021.)
- January 2021
- Supplement
E-Commerce Analytics for CPG Firms (B): Optimizing Assortment for a New Retailer
By: Ayelet Israeli and Fedor (Ted) Lisitsyn
The E-Commerce Analytics group at the traditional CPG firm was in charge of compiling various online sales reports, as well as making data-driven recommendations for sales and marketing tactics. In a series of exercises, students address different data challenges for... View Details
Keywords: Data Analysis; Data Analytics; CPG; Consumer Packaged Goods (CPG); Online Channel; Retail; Retail Analytics; Retailing Industry; Data; Data Sharing; Ecommerce; Assortment Optimization; Assortment Planning; Analytics and Data Science; Retention; Retail Industry; Consumer Products Industry; United States
- January 2021
- Exercise
E-Commerce Analytics for CPG Firms (B): Optimizing Assortment for a New Retailer
By: Ayelet Israeli and Fedor (Ted) Lisitsyn
The E-Commerce Analytics group at the traditional CPG firm was in charge of compiling various online sales reports, as well as making data-driven recommendations for sales and marketing tactics. In a series of exercises, students address different data challenges for... View Details
Keywords: Data Analysis; Data Analytics; CPG; Consumer Packaged Goods (CPG); Online Channel; Retail Analytics; Retail; Retailing Industry; Data; Data Sharing; Ecommerce; CRM; Loyalty Management; Assortment Planning; Assortment Optimization; Lifetime Value (LTV); Analytics and Data Science; Analysis; Retention; E-commerce; Retail Industry; Consumer Products Industry; United States
Israeli, Ayelet, and Fedor (Ted) Lisitsyn. "E-Commerce Analytics for CPG Firms (B): Optimizing Assortment for a New Retailer." Harvard Business School Exercise 521-079, January 2021.
- January 2021 (Revised March 2021)
- Supplement
E-Commerce Analytics for CPG Firms (C): Free Delivery Terms
By: Ayelet Israeli and Fedor (Ted) Lisitsyn
The E-Commerce Analytics group at the traditional CPG firm was in charge of compiling various online sales reports, as well as making data-driven recommendations for sales and marketing tactics. In a series of exercises, students address different data challenges for... View Details
Keywords: Data; Data Analysis; Data Analytics; Data Sharing; CPG; Consumer Packaged Goods (CPG); Delivery Planning; Customer Lifetime Value; Online Channel; Retail; Retail Analytics; Retailing Industry; Ecommerce; Grocery; Grocery Delivery; Margins; Retention; Analytics and Data Science; Analysis; Retail Industry; Consumer Products Industry; United States