Filter Results:
(211)
Show Results For
- All HBS Web
(1,008)
- Faculty Publications (211)
Show Results For
- All HBS Web
(1,008)
- Faculty Publications (211)
Page 1 of 211
Results →
- October 2024
- Article
Canary Categories
By: Eric Anderson, Chaoqun Chen, Ayelet Israeli and Duncan Simester
Past customer spending in a category is generally a positive signal of future customer spending. We show that there exist “canary categories” for which the reverse is true. Purchases in these categories are a signal that customers are less likely to return to that... View Details
Keywords: Churn; Churn Management; Churn/retention; Assortment Planning; Retail; Retailing; Retailing Industry; Preference Heterogeneity; Assortment Optimization; Customers; Retention; Consumer Behavior; Forecasting and Prediction; Retail Industry
Anderson, Eric, Chaoqun Chen, Ayelet Israeli, and Duncan Simester. "Canary Categories." Journal of Marketing Research (JMR) 61, no. 5 (October 2024): 872–890.
- 2024
- Working Paper
Pitfalls of Demographic Forecasts of U.S. Elections
By: Richard Calvo, Vincent Pons and Jesse M. Shapiro
Many observers have forecast large partisan shifts in the US electorate based on demographic trends. Such forecasts are appealing because demographic trends are often predictable even over long horizons. We backtest demographic forecasts using data on US elections... View Details
Keywords: Mathematical Methods; Voting; Political Elections; Trends; Forecasting and Prediction; Demographics
Calvo, Richard, Vincent Pons, and Jesse M. Shapiro. "Pitfalls of Demographic Forecasts of U.S. Elections." NBER Working Paper Series, No. 33016, October 2024.
- 2024
- Article
Learning Under Random Distributional Shifts
By: Kirk Bansak, Elisabeth Paulson and Dominik Rothenhäusler
Algorithmic assignment of refugees and asylum seekers to locations within host
countries has gained attention in recent years, with implementations in the U.S.
and Switzerland. These approaches use data on past arrivals to generate machine
learning models that can... View Details
Bansak, Kirk, Elisabeth Paulson, and Dominik Rothenhäusler. "Learning Under Random Distributional Shifts." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 27th (2024).
- July 2024
- Article
Chatbots and Mental Health: Insights into the Safety of Generative AI
By: Julian De Freitas, Ahmet Kaan Uğuralp, Zeliha Uğuralp and Stefano Puntoni
Chatbots are now able to engage in sophisticated conversations with consumers. Due to the ‘black box’ nature of the algorithms, it is impossible to predict in advance how these conversations will unfold. Behavioral research provides little insight into potential safety... View Details
Keywords: Autonomy; Chatbots; New Technology; Brand Crises; Mental Health; Large Language Model; AI and Machine Learning; Behavior; Well-being; Technological Innovation; Ethics
De Freitas, Julian, Ahmet Kaan Uğuralp, Zeliha Uğuralp, and Stefano Puntoni. "Chatbots and Mental Health: Insights into the Safety of Generative AI." Journal of Consumer Psychology 34, no. 3 (July 2024): 481–491.
- 2024
- Working Paper
How Inflation Expectations De-Anchor: The Role of Selective Memory Cues
By: Nicola Gennaioli, Marta Leva, Raphael Schoenle and Andrei Shleifer
In a model of memory and selective recall, household inflation expectations remain rigid when inflation is anchored but exhibit sharp instability during inflation surges, as similarity prompts retrieval of forgotten high-inflation experiences. Using data from the New... View Details
Gennaioli, Nicola, Marta Leva, Raphael Schoenle, and Andrei Shleifer. "How Inflation Expectations De-Anchor: The Role of Selective Memory Cues." NBER Working Paper Series, No. 32633, June 2024.
- 2024
- Working Paper
Incrementality Representation Learning: Synergizing Past Experiments for Intervention Personalization
This paper introduces Incrementality Representation Learning (IRL), a novel multitask representation learning framework that predicts heterogeneous causal effects of marketing interventions. By leveraging past experiments, IRL efficiently designs and targets... View Details
Keywords: Heterogeneous Treatment Effect; Multi-task Learning; Representation Learning; Personalization; Promotion; Deep Learning; Field Experiments; Customer Focus and Relationships; Customization and Personalization
Huang, Ta-Wei, Eva Ascarza, and Ayelet Israeli. "Incrementality Representation Learning: Synergizing Past Experiments for Intervention Personalization." Harvard Business School Working Paper, No. 24-076, June 2024.
- April 2024
- Article
A Machine Learning Algorithm Predicting Risk of Dilating VUR among Infants with Hydronephrosis Using UTD Classification
By: Hsin-Hsiao Scott Wang, Michael Lingzhi Li, Dylan Cahill, John Panagides, Tanya Logvinenko, Jeanne Chow and Caleb Nelson
Backgrounds: Urinary Tract Dilation (UTD) classification has been designed to be a more objective grading system to evaluate antenatal and post-natal UTD. Due to unclear association between UTD classifications to specific anomalies such as vesico-ureteral reflux (VUR),... View Details
Wang, Hsin-Hsiao Scott, Michael Lingzhi Li, Dylan Cahill, John Panagides, Tanya Logvinenko, Jeanne Chow, and Caleb Nelson. "A Machine Learning Algorithm Predicting Risk of Dilating VUR among Infants with Hydronephrosis Using UTD Classification." Journal of Pediatric Urology 20, no. 2 (April 2024): 271–278.
- April 2024
- Article
Demand-and-Supply Imbalance Risk and Long-Term Swap Spreads
By: Samuel G. Hanson, Aytek Malkhozov and Gyuri Venter
We develop and test a model in which swap spreads are determined by end users' demand for
and constrained intermediaries’ supply of long-term interest rate swaps. Swap spreads reflect
compensation both for using scarce intermediary capital and for bearing convergence... View Details
Keywords: Swap Spreads; Credit Derivatives and Swaps; Interest Rates; Risk and Uncertainty; Volatility
Hanson, Samuel G., Aytek Malkhozov, and Gyuri Venter. "Demand-and-Supply Imbalance Risk and Long-Term Swap Spreads." Art. 103814. Journal of Financial Economics 154 (April 2024).
- March 2024
- Case
Hippo: Weathering the Storm of the Home Insurance Crisis
By: Lauren Cohen, Grace Headinger and Sophia Pan
Rick McCathron, CEO of Hippo, considered how the firm’s underwriting model could account for the effects of climate change. Along with providing smart home packages, targeting risk-friendly customers, and using data-driven pricing, the Insurtech used technologically... View Details
Keywords: Fintech; Underwriters; Big Data; Insurance Companies; Business Model Design; Weather Insurance; Business Model; Forecasting and Prediction; Climate Change; Environmental Sustainability; Green Technology; Technological Innovation; Natural Environment; Natural Disasters; Weather; Business Strategy; Competitive Advantage; Business Earnings; Insurance; Social Issues; Insurance Industry; United States; California
- February 2024
- Teaching Note
AB InBev: Brewing Up Forecasts during COVID-19
By: Mark Egan and C. Fritz Foley
Teaching Note for HBS Case No. 224-020. In July 2021, the CEO of AB InBev's European operations and his team strategized to position the company for success post-pandemic. As the world's largest beer company, boasting over 500 brands, revenue of $46 billion, and a... View Details
- 2023
- Working Paper
'De Gustibus' and Disputes about Reference Dependence
By: Thomas Graeber, Pol Campos-Mercade, Lorenz Goette, Alexandre Kellogg and Charles Sprenger
Existing tests of reference-dependent preferences assume universal loss aversion. This paper examines the implications of heterogeneity in gain-loss attitudes for such tests. In experiments on labor supply and exchange behavior we measure gain-loss attitudes and then... View Details
Graeber, Thomas, Pol Campos-Mercade, Lorenz Goette, Alexandre Kellogg, and Charles Sprenger. "'De Gustibus' and Disputes about Reference Dependence." Harvard Business School Working Paper, No. 24-046, January 2024.
- February 2024
- Article
Representation and Extrapolation: Evidence from Clinical Trials
By: Marcella Alsan, Maya Durvasula, Harsh Gupta, Joshua Schwartzstein and Heidi L. Williams
This article examines the consequences and causes of low enrollment of Black patients in clinical
trials. We develop a simple model of similarity-based extrapolation that predicts that evidence is
more relevant for decision-making by physicians and patients when it... View Details
Keywords: Representation; Racial Disparity; Health Testing and Trials; Race; Equality and Inequality; Innovation and Invention; Pharmaceutical Industry
Alsan, Marcella, Maya Durvasula, Harsh Gupta, Joshua Schwartzstein, and Heidi L. Williams. "Representation and Extrapolation: Evidence from Clinical Trials." Quarterly Journal of Economics 139, no. 1 (February 2024): 575–635.
- 2024
- Working Paper
The Impact of Culture Consistency on Subunit Outcomes
By: Jasmijn Bol, Robert Grasser, Serena Loftus and Tatiana Sandino
We examine the association between subunit culture consistency—defined as the
congruence between the organizational values espoused by top management and those
perceived and practiced by subunit employees—and subunit outcomes. Using data
from 235 subunits of a North... View Details
Bol, Jasmijn, Robert Grasser, Serena Loftus, and Tatiana Sandino. "The Impact of Culture Consistency on Subunit Outcomes." Working Paper, January 2024.
- 2023
- Working Paper
Debiasing Treatment Effect Estimation for Privacy-Protected Data: A Model Auditing and Calibration Approach
By: Ta-Wei Huang and Eva Ascarza
Data-driven targeted interventions have become a powerful tool for organizations to optimize business outcomes
by utilizing individual-level data from experiments. A key element of this process is the estimation
of Conditional Average Treatment Effects (CATE), which... View Details
Huang, Ta-Wei, and Eva Ascarza. "Debiasing Treatment Effect Estimation for Privacy-Protected Data: A Model Auditing and Calibration Approach." Harvard Business School Working Paper, No. 24-034, December 2023.
- 2023
- Article
M4: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities, and Models
By: Himabindu Lakkaraju, Xuhong Li, Mengnan Du, Jiamin Chen, Yekun Chai and Haoyi Xiong
While Explainable Artificial Intelligence (XAI) techniques have been widely studied to explain predictions made by deep neural networks, the way to evaluate the faithfulness of explanation results remains challenging, due to the heterogeneity of explanations for... View Details
Keywords: AI and Machine Learning
Lakkaraju, Himabindu, Xuhong Li, Mengnan Du, Jiamin Chen, Yekun Chai, and Haoyi Xiong. "M4: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities, and Models." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- 2023
- Article
Post Hoc Explanations of Language Models Can Improve Language Models
By: Satyapriya Krishna, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh and Himabindu Lakkaraju
Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance... View Details
Krishna, Satyapriya, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh, and Himabindu Lakkaraju. "Post Hoc Explanations of Language Models Can Improve Language Models." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- 2023
- Other Article
The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and Multi-Purpose Corpus of Patent Applications
By: Mirac Suzgun, Luke Melas-Kyriazi, Suproteem K. Sarkar, Scott Duke Kominers and Stuart Shieber
Innovation is a major driver of economic and social development, and information about many kinds of innovation is embedded in semi-structured data from patents and patent applications. Though the impact and novelty of innovations expressed in patent data are difficult... View Details
Keywords: USPTO; Natural Language Processing; Classification; Summarization; Patent Novelty; Patent Trolls; Patent Enforceability; Patents; Innovation and Invention; Intellectual Property; AI and Machine Learning; Analytics and Data Science
Suzgun, Mirac, Luke Melas-Kyriazi, Suproteem K. Sarkar, Scott Duke Kominers, and Stuart Shieber. "The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and Multi-Purpose Corpus of Patent Applications." Conference on Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks Track 36 (2023).
- 2023
- Article
Verifiable Feature Attributions: A Bridge between Post Hoc Explainability and Inherent Interpretability
By: Usha Bhalla, Suraj Srinivas and Himabindu Lakkaraju
With the increased deployment of machine learning models in various real-world applications, researchers and practitioners alike have emphasized the need for explanations of model behaviour. To this end, two broad strategies have been outlined in prior literature to... View Details
Bhalla, Usha, Suraj Srinivas, and Himabindu Lakkaraju. "Verifiable Feature Attributions: A Bridge between Post Hoc Explainability and Inherent Interpretability." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- Working Paper
An AI Method to Score Celebrity Visual Potential from Human Faces
By: Flora Feng, Shunyuan Zhang, Xiao Liu, Kannan Srinivasan and Cait Lamberton
Celebrities have extraordinary abilities to attract and influence others. Predicting celebrity visual potential is important in the domains of business, politics, media, and entertainment. Can we use human faces to predict celebrity visual potential? If so, which... View Details
Feng, Flora, Shunyuan Zhang, Xiao Liu, Kannan Srinivasan, and Cait Lamberton. "An AI Method to Score Celebrity Visual Potential from Human Faces." SSRN Working Paper Series, No. 4071188, November 2023.
- October 2023
- Article
Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA
By: Matthew S. Johnson, David I. Levine and Michael W. Toffel
We study how a regulator can best target inspections. Our case study is a U.S. Occupational Safety and Health Administration (OSHA) program that randomly allocated some inspections. On average, each inspection averted 2.4 serious injuries (9%) over the next five years.... View Details
Keywords: Safety Regulations; Regulations; Regulatory Enforcement; Machine Learning Models; Safety; Operations; Service Operations; Production; Forecasting and Prediction; Decisions; United States
Johnson, Matthew S., David I. Levine, and Michael W. Toffel. "Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA." American Economic Journal: Applied Economics 15, no. 4 (October 2023): 30–67. (Profiled in the Regulatory Review.)