Filter Results:
(229)
Show Results For
- All HBS Web
(704)
- Faculty Publications (229)
Show Results For
- All HBS Web
(704)
- Faculty Publications (229)
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for iBuyer 2
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for iBuyer 2." Harvard Business School Exercise 923-020, October 2022.
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for iBuyer 3
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Keywords: Algorithm; Decision Choices and Conditions; Decision Making; Measurement and Metrics; Market Timing
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for iBuyer 3." Harvard Business School Exercise 923-021, October 2022.
- October 2022
- Exercise
Shanty Real Estate: Updated Confidential Information for Homebuyer
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Keywords: Algorithm; Decision Choices and Conditions; Decision Making; Market Timing; Measurement and Metrics
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Updated Confidential Information for Homebuyer." Harvard Business School Exercise 923-022, October 2022.
- October 2022
- Exercise
Shanty Real Estate: Updated Confidential Information for iBuyer
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Keywords: Algorithm; Decision Choices and Conditions; Measurement and Metrics; Market Timing; Decision Making
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Updated Confidential Information for iBuyer." Harvard Business School Exercise 923-023, October 2022.
- October–December 2022
- Article
Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem
By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed... View Details
Keywords: Machine Learning; Econometric Analysis; Instrumental Variable; Random Forest; Causal Inference; AI and Machine Learning; Forecasting and Prediction
Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." INFORMS Journal on Data Science 1, no. 2 (October–December 2022): 138–155.
- 2022
- Article
Nonparametric Subset Scanning for Detection of Heteroscedasticity
By: Charles R. Doss and Edward McFowland III
We propose Heteroscedastic Subset Scan (HSS), a novel method for identifying covariates that are responsible for violations of the homoscedasticity assumption in regression settings. Viewing the problem as one of anomalous pattern detection, we use subset scanning... View Details
Doss, Charles R., and Edward McFowland III. "Nonparametric Subset Scanning for Detection of Heteroscedasticity." Journal of Computational and Graphical Statistics 31, no. 3 (2022): 813–823.
- Article
Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)
By: Eva Ascarza and Ayelet Israeli
An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those “protected”... View Details
Keywords: Algorithm Bias; Personalization; Targeting; Generalized Random Forests (GRF); Discrimination; Customization and Personalization; Decision Making; Fairness; Mathematical Methods
Ascarza, Eva, and Ayelet Israeli. "Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)." e2115126119. Proceedings of the National Academy of Sciences 119, no. 11 (March 8, 2022).
- March 2022 (Revised February 2024)
- Case
Applied Intuition: Powering Autonomy
By: Andy Wu, Rocio Wu and Matt Higgins
Applied Intuition, a leader in autonomous vehicle simulation software, has just closed on a $175 million round of Series D financing that values the four-year-old firm at $3.6 billion. With the immediate future secure, CEO Qasar Younis must now chart a strategic course... View Details
Keywords: Autonomous Vehicles; Software; Strategy; Competitive Strategy; Growth and Development Strategy; Valuation; Auto Industry; Technology Industry; California; Detroit
Wu, Andy, Rocio Wu, and Matt Higgins. "Applied Intuition: Powering Autonomy." Harvard Business School Case 722-407, March 2022. (Revised February 2024.)
- March 2022
- Article
Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models
By: Fiammetta Menchetti and Iavor Bojinov
Researchers regularly use synthetic control methods for estimating causal effects when a sub-set of units receive a single persistent treatment, and the rest are unaffected by the change. In many applications, however, units not assigned to treatment are nevertheless... View Details
Keywords: Causal Inference; Partial Interference; Synthetic Controls; Bayesian Structural Time Series; Mathematical Methods
Menchetti, Fiammetta, and Iavor Bojinov. "Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models." Annals of Applied Statistics 16, no. 1 (March 2022): 414–435.
- March 2022
- Article
Learning to Rank an Assortment of Products
By: Kris Ferreira, Sunanda Parthasarathy and Shreyas Sekar
We consider the product ranking challenge that online retailers face when their customers typically behave as “window shoppers”: they form an impression of the assortment after browsing products ranked in the initial positions and then decide whether to continue... View Details
Keywords: Online Learning; Product Ranking; Assortment Optimization; Learning; Internet and the Web; Product Marketing; Consumer Behavior; E-commerce
Ferreira, Kris, Sunanda Parthasarathy, and Shreyas Sekar. "Learning to Rank an Assortment of Products." Management Science 68, no. 3 (March 2022): 1828–1848.
- March 2022
- Article
Where to Locate COVID-19 Mass Vaccination Facilities?
By: Dimitris Bertsimas, Vassilis Digalakis Jr, Alexander Jacquillat, Michael Lingzhi Li and Alessandro Previero
The outbreak of COVID-19 led to a record-breaking race to develop a vaccine. However, the limited vaccine capacity creates another massive challenge: how to distribute vaccines to mitigate the near-end impact of the pandemic? In the United States in particular, the new... View Details
Keywords: Vaccines; COVID-19; Health Care and Treatment; Health Pandemics; Performance Effectiveness; Analytics and Data Science; Mathematical Methods
Bertsimas, Dimitris, Vassilis Digalakis Jr, Alexander Jacquillat, Michael Lingzhi Li, and Alessandro Previero. "Where to Locate COVID-19 Mass Vaccination Facilities?" Naval Research Logistics Quarterly 69, no. 2 (March 2022): 179–200.
- December 2021
- Article
Seeing Oneself as a Valued Contributor: Social Worth Affirmation Improves Team Information Sharing
By: Julia Lee Cunningham, Francesca Gino, Dan Cable and Bradley Staats
Teams often fail to reach their potential because members’ concerns about being socially accepted prevent them from offering their unique perspectives to the team. Drawing on relational self and self-affirmation theory, we argue that affirmation of team members’ social... View Details
Keywords: Social Worth Affirmation; Relational Identity; Self-affirmation; Information Sharing In Teams; Concerns About Social Acceptance; Groups and Teams; Identity; Relationships; Knowledge Sharing
Cunningham, Julia Lee, Francesca Gino, Dan Cable, and Bradley Staats. "Seeing Oneself as a Valued Contributor: Social Worth Affirmation Improves Team Information Sharing." Academy of Management Journal 64, no. 6 (December 2021): 1816–1841.
- 2021
- Article
ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation
By: Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Julian De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, Kuno Kim, Elias Wang, Michael Lingelbach, Aidan Curtis, Kevin Feigelis, Daniel M. Bear, Dan Gutfreund, David Cox, Antonio Torralba, James J. DiCarlo, Joshua B. Tenenbaum, Josh H. McDermott and Daniel L.K. Yamins
We introduce ThreeDWorld (TDW), a platform for interactive multi-modal physical simulation. TDW enables simulation of high-fidelity sensory data and physical interactions between mobile agents and objects in rich 3D environments. Unique properties include: real-time... View Details
Keywords: Artificial Intelligence; Platform; Interactive Physical Simulation; Virtual Environment; Multi-modal; AI and Machine Learning
Gan, Chuang, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Julian De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, Kuno Kim, Elias Wang, Michael Lingelbach, Aidan Curtis, Kevin Feigelis, Daniel M. Bear, Dan Gutfreund, David Cox, Antonio Torralba, James J. DiCarlo, Joshua B. Tenenbaum, Josh H. McDermott, and Daniel L.K. Yamins. "ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation." Conference on Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks Track 35th (2021).
- October 2021
- Article
Changing Gambling Behavior through Experiential Learning
By: Shawn A. Cole, Martin Abel and Bilal Zia
This paper tests experiential learning as a debiasing tool to reduce gambling in South Africa, through a randomized field experiment. The study implements a simple, interactive game that simulates the odds of winning the national lottery through dice rolling.... View Details
Keywords: Debiasing; Experiential Learning; Behavioral Economics; Financial Education; Learning; Games, Gaming, and Gambling; Behavior; Decision Making
Cole, Shawn A., Martin Abel, and Bilal Zia. "Changing Gambling Behavior through Experiential Learning." World Bank Economic Review 35, no. 3 (October 2021): 745–763.
- August 2021
- Article
Multiple Imputation Using Gaussian Copulas
By: F.M. Hollenbach, I. Bojinov, S. Minhas, N.W. Metternich, M.D. Ward and A. Volfovsky
Missing observations are pervasive throughout empirical research, especially in the social sciences. Despite multiple approaches to dealing adequately with missing data, many scholars still fail to address this vital issue. In this paper, we present a simple-to-use... View Details
Hollenbach, F.M., I. Bojinov, S. Minhas, N.W. Metternich, M.D. Ward, and A. Volfovsky. "Multiple Imputation Using Gaussian Copulas." Special Issue on New Quantitative Approaches to Studying Social Inequality. Sociological Methods & Research 50, no. 3 (August 2021): 1259–1283. (0049124118799381.)
- Article
Joy and Rigor in Behavioral Science
By: Hanne K. Collins, Ashley V. Whillans and Leslie K. John
In the past decade, behavioral science has seen the introduction of beneficial reforms to reduce false positive results. Serving as the motivational backdrop for the present research, we wondered whether these reforms might have unintended negative consequences on... View Details
Keywords: Open Science; Pre-registration; Exploration; Confirmation; False Positives; Career Satisfaction; Science; Research; Personal Development and Career; Satisfaction; Diversity
Collins, Hanne K., Ashley V. Whillans, and Leslie K. John. "Joy and Rigor in Behavioral Science." Organizational Behavior and Human Decision Processes 164 (May 2021): 179–191.
- May 2021
- Article
Value-Based Healthcare in Urology: A Collaborative Review
By: Chanan Reitblat, Paul A. Bain, Michael E. Porter, David N. Bernstein, Thomas W. Feeley, Markus Graefen, Santosh Iyer, Matthew J. Resnick, C.J. Stimson, Quoc-Dien Trinh and Boris Gershman
Context:
In response to growing concerns over rising costs and major variation in quality, improving value for patients has been proposed as a fundamentally new strategy for how healthcare should be delivered, measured, and... View Details
In response to growing concerns over rising costs and major variation in quality, improving value for patients has been proposed as a fundamentally new strategy for how healthcare should be delivered, measured, and... View Details
Keywords: Value-based Healthcare; Integrated Practice Units; Outcome Measurement; Time-Driven Activity-Based Costing; Health Care and Treatment; Value; Cost Management; Strategy; Outcome or Result; Measurement and Metrics
Reitblat, Chanan, Paul A. Bain, Michael E. Porter, David N. Bernstein, Thomas W. Feeley, Markus Graefen, Santosh Iyer, Matthew J. Resnick, C.J. Stimson, Quoc-Dien Trinh, and Boris Gershman. "Value-Based Healthcare in Urology: A Collaborative Review." European Urology 79, no. 5 (May 2021): 571–585.
- 2021
- Article
Does Fair Ranking Improve Minority Outcomes? Understanding the Interplay of Human and Algorithmic Biases in Online Hiring
By: Tom Sühr, Sophie Hilgard and Himabindu Lakkaraju
Ranking algorithms are being widely employed in various online hiring platforms including LinkedIn, TaskRabbit, and Fiverr. Prior research has demonstrated that ranking algorithms employed by these platforms are prone to a variety of undesirable biases, leading to the... View Details
Sühr, Tom, Sophie Hilgard, and Himabindu Lakkaraju. "Does Fair Ranking Improve Minority Outcomes? Understanding the Interplay of Human and Algorithmic Biases in Online Hiring." Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society 4th (2021).
- February 2021
- Technical Note
Probability Distributions
By: Michael Parzen and Paul Hamilton
This technical note introduces students to the concept of random variables, and from there the normal and binomial distributions. After a brief introduction to random variables, the note describes the standard properties of the normal distribution: a single peak, and a... View Details
Parzen, Michael, and Paul Hamilton. "Probability Distributions." Harvard Business School Technical Note 621-704, February 2021.
- January 2021
- Case
The FIRE Savings Calculator
By: Michael Parzen and Paul Hamilton
This case follows Carol Muñoz, a member of the Financial Independence, Retire Early (FIRE) lifestyle movement. At the age of 45, Carol is considering retiring and living off the $1 million she has accumulated. Using Monte Carlo simulation, Carol forecasts the... View Details