Filter Results:
(335)
Show Results For
- All HBS Web
(1,126)
- Faculty Publications (335)
Show Results For
- All HBS Web
(1,126)
- Faculty Publications (335)
- October 2023
- Case
Making Progress at Progress Software (A)
By: Katherine Coffman, Hannah Riley Bowles and Alexis Lefort
In this case, the Human Capital team at Progress Software has identified that some employees have a hard time understanding how to advance within Progress. This realization leads the team to develop several major people-process innovations: the introduction of... View Details
Keywords: Leading Change; Organizational Culture; Performance Evaluation; Prejudice and Bias; Personal Development and Career; Human Capital; Employee Relationship Management; Technology Industry; Bulgaria
Coffman, Katherine, Hannah Riley Bowles, and Alexis Lefort. "Making Progress at Progress Software (A)." Harvard Business School Case 924-010, October 2023.
- October 2023
- Teaching Note
Timnit Gebru: 'SILENCED No More' on AI Bias and The Harms of Large Language Models
By: Tsedal Neeley and Tim Englehart
Teaching Note for HBS Case No. 422-085. Dr. Timnit Gebru—a leading artificial intelligence (AI) computer scientist and co-lead of Google’s Ethical AI team—was messaging with one of her colleagues when she saw the words: “Did you resign?? Megan sent an email saying that... View Details
- October 2023
- Supplement
Making Progress at Progress Software (B)
By: Katherine Coffman, Hannah Riley Bowles and Alexis Lefort
In this case, the Human Capital team at Progress Software has identified that some employees have a hard time understanding how to advance within Progress. This realization leads the team to develop several major people-process innovations: the introduction of... View Details
Keywords: Leading Change; Negotiation; Organizational Culture; Performance Evaluation; Prejudice and Bias; Talent and Talent Management; Employees; Technology Industry; United States; Bulgaria
Coffman, Katherine, Hannah Riley Bowles, and Alexis Lefort. "Making Progress at Progress Software (B)." Harvard Business School Supplement 924-011, October 2023.
- 2023
- Working Paper
Causal Interpretation of Structural IV Estimands
By: Isaiah Andrews, Nano Barahona, Matthew Gentzkow, Ashesh Rambachan and Jesse M. Shapiro
We study the causal interpretation of instrumental variables (IV) estimands of nonlinear, multivariate structural models with respect to rich forms of model misspecification. We focus on guaranteeing that the researcher's estimator is sharp zero consistent, meaning... View Details
Keywords: Mathematical Methods
Andrews, Isaiah, Nano Barahona, Matthew Gentzkow, Ashesh Rambachan, and Jesse M. Shapiro. "Causal Interpretation of Structural IV Estimands." NBER Working Paper Series, No. 31799, October 2023.
- September 29, 2023
- Article
Eliminating Algorithmic Bias Is Just the Beginning of Equitable AI
By: Simon Friis and James Riley
When it comes to artificial intelligence and inequality, algorithmic bias rightly receives a lot of attention. But it’s just one way that AI can lead to inequitable outcomes. To truly create equitable AI, we need to consider three forces through which it might make... View Details
Friis, Simon, and James Riley. "Eliminating Algorithmic Bias Is Just the Beginning of Equitable AI." Harvard Business Review (website) (September 29, 2023).
- September 2023
- Exercise
Irrationality in Action: Decision-Making Exercise
By: Alison Wood Brooks, Michael I. Norton and Oliver Hauser
This teaching exercise highlights the obstacle of biases in decision-making, allowing students to generate examples of potentially poor decision-making rooted in abundant and unwanted bias. This exercise has two parts: a pre-class, online survey in which students... View Details
Brooks, Alison Wood, Michael I. Norton, and Oliver Hauser. "Irrationality in Action: Decision-Making Exercise." Harvard Business School Exercise 924-007, September 2023.
- 2024
- Working Paper
Second- versus Third-party Audit Quality: Evidence from Global Supply Chain Monitoring
By: Maria R. Ibanez, Ashley Palmarozzo, Jodi L. Short and Michael W. Toffel
Capitalizing on the superior credibility and flexibility and potential lower cost of external assessments, many global buyers are relying less on their own employee (“second-party”) auditors and more on third-party auditors to monitor and prevent environmental and... View Details
Keywords: Auditing; Audit Quality; Working Conditions; Sustainability; Empirical Operations; Empirical Service Operations; Sustainability Management; Corporate Accountability; Corporate Social Responsibility and Impact; Supply Chain Management
Ibanez, Maria R., Ashley Palmarozzo, Jodi L. Short, and Michael W. Toffel. "Second- versus Third-party Audit Quality: Evidence from Global Supply Chain Monitoring." Working Paper, August 2024.
- June 2023
- Simulation
Artea Dashboard and Targeting Policy Evaluation
By: Ayelet Israeli and Eva Ascarza
Companies deploy A/B experiments to gain valuable insights about their customers in order to answer strategic business problems. In marketing, A/B tests are often used to evaluate marketing interventions intended to generate incremental outcomes for the firm. The Artea... View Details
Keywords: Algorithm Bias; Algorithmic Data; Race And Ethnicity; Experimentation; Promotion; Marketing And Society; Big Data; Privacy; Data-driven Management; Data Analysis; Data Analytics; E-Commerce Strategy; Discrimination; Targeted Advertising; Targeted Policies; Pricing Algorithms; A/B Testing; Ethical Decision Making; Customer Base Analysis; Customer Heterogeneity; Coupons; Marketing; Race; Gender; Diversity; Customer Relationship Management; Marketing Communications; Advertising; Decision Making; Ethics; E-commerce; Analytics and Data Science; Apparel and Accessories Industry; Apparel and Accessories Industry; United States
- 2023
- Working Paper
Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness
By: Neil Menghani, Edward McFowland III and Daniel B. Neill
In this paper, we develop a new criterion, "insufficiently justified disparate impact" (IJDI), for assessing whether recommendations (binarized predictions) made by an algorithmic decision support tool are fair. Our novel, utility-based IJDI criterion evaluates false... View Details
Menghani, Neil, Edward McFowland III, and Daniel B. Neill. "Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness." Working Paper, June 2023.
- June 2023
- Article
Amplification of Emotion on Social Media
By: Amit Goldenberg and Robb Willer
Why do expressions of emotion seem so heightened on social media? Brady et al. argue that extreme moral outrage on social media is not only driven by the producers and sharers of emotional expressions, but also by systematic biases in the way people that perceive moral... View Details
Goldenberg, Amit, and Robb Willer. "Amplification of Emotion on Social Media." Nature Human Behaviour 7, no. 6 (June 2023): 845–846.
- 2023
- Working Paper
Auditing Predictive Models for Intersectional Biases
By: Kate S. Boxer, Edward McFowland III and Daniel B. Neill
Predictive models that satisfy group fairness criteria in aggregate for members of a protected class, but do not guarantee subgroup fairness, could produce biased predictions for individuals at the intersection of two or more protected classes. To address this risk, we... View Details
Boxer, Kate S., Edward McFowland III, and Daniel B. Neill. "Auditing Predictive Models for Intersectional Biases." Working Paper, June 2023.
- 2023
- Article
Provable Detection of Propagating Sampling Bias in Prediction Models
By: Pavan Ravishankar, Qingyu Mo, Edward McFowland III and Daniel B. Neill
With an increased focus on incorporating fairness in machine learning models, it becomes imperative not only to assess and mitigate bias at each stage of the machine learning pipeline but also to understand the downstream impacts of bias across stages. Here we consider... View Details
Ravishankar, Pavan, Qingyu Mo, Edward McFowland III, and Daniel B. Neill. "Provable Detection of Propagating Sampling Bias in Prediction Models." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 8 (2023): 9562–9569. (Presented at the 37th AAAI Conference on Artificial Intelligence (2/7/23-2/14/23) in Washington, DC.)
- May 9, 2023
- Article
8 Questions About Using AI Responsibly, Answered
By: Tsedal Neeley
Generative AI tools are poised to change the way every business operates. As your own organization begins strategizing which to use, and how, operational and ethical considerations are inevitable. This article delves into eight of them, including how your organization... View Details
Neeley, Tsedal. "8 Questions About Using AI Responsibly, Answered." Harvard Business Review (website) (May 9, 2023).
- 2023
- Working Paper
Setting Gendered Expectations? Recruiter Outreach Bias in Online Tech Training Programs
By: Jacqueline N. Lane, Karim R. Lakhani and Roberto Fernandez
Competence development in digital technologies, analytics, and artificial intelligence is increasingly important to all types of organizations and their workforce. Universities and corporations are investing heavily in developing training programs, at all tenure... View Details
Keywords: STEM; Selection and Staffing; Gender; Prejudice and Bias; Training; Equality and Inequality; Competency and Skills
Lane, Jacqueline N., Karim R. Lakhani, and Roberto Fernandez. "Setting Gendered Expectations? Recruiter Outreach Bias in Online Tech Training Programs." Harvard Business School Working Paper, No. 23-066, April 2023. (Accepted by Organization Science.)
- 2023
- Article
Estimating Causal Peer Influence in Homophilous Social Networks by Inferring Latent Locations.
By: Edward McFowland III and Cosma Rohilla Shalizi
Social influence cannot be identified from purely observational data on social networks, because such influence is generically confounded with latent homophily, that is, with a node’s network partners being informative about the node’s attributes and therefore its... View Details
Keywords: Causal Inference; Homophily; Social Networks; Peer Influence; Social and Collaborative Networks; Power and Influence; Mathematical Methods
McFowland III, Edward, and Cosma Rohilla Shalizi. "Estimating Causal Peer Influence in Homophilous Social Networks by Inferring Latent Locations." Journal of the American Statistical Association 118, no. 541 (2023): 707–718.
- 2023
- Working Paper
Feature Importance Disparities for Data Bias Investigations
By: Peter W. Chang, Leor Fishman and Seth Neel
It is widely held that one cause of downstream bias in classifiers is bias present in the training data. Rectifying such biases may involve context-dependent interventions such as training separate models on subgroups, removing features with bias in the collection... View Details
Chang, Peter W., Leor Fishman, and Seth Neel. "Feature Importance Disparities for Data Bias Investigations." Working Paper, March 2023.
- 2023
- Working Paper
The Limits of Algorithmic Measures of Race in Studies of Outcome Disparities
By: David S. Scharfstein and Sergey Chernenko
We show that the use of algorithms to predict race has significant limitations in measuring and understanding the sources of racial disparities in finance, economics, and other contexts. First, we derive theoretically the direction and magnitude of measurement bias in... View Details
Keywords: Racial Disparity; Paycheck Protection Program; Measurement Error; AI and Machine Learning; Race; Measurement and Metrics; Equality and Inequality; Prejudice and Bias; Forecasting and Prediction; Outcome or Result
Scharfstein, David S., and Sergey Chernenko. "The Limits of Algorithmic Measures of Race in Studies of Outcome Disparities." Working Paper, April 2023.
- 2023
- Chapter
Marketing Through the Machine’s Eyes: Image Analytics and Interpretability
By: Shunyuan Zhang, Flora Feng and Kannan Srinivasan
he growth of social media and the sharing economy is generating abundant unstructured image and video data. Computer vision techniques can derive rich insights from unstructured data and can inform recommendations for increasing profits and consumer utility—if only the... View Details
Zhang, Shunyuan, Flora Feng, and Kannan Srinivasan. "Marketing Through the Machine’s Eyes: Image Analytics and Interpretability." Chap. 8 in Artificial Intelligence in Marketing. 20, edited by Naresh K. Malhotra, K. Sudhir, and Olivier Toubia, 217–238. Review of Marketing Research. Emerald Publishing Limited, 2023.
- February 2023
- Teaching Note
Colette Phillips and GetKonnected: Creating Inclusive Ecosystems
By: Rosabeth M. Kanter and Ai-Ling Jamila Malone
Teaching Note for HBS Case No. 323-035. View Details
Keywords: Diversity; Ecosystem; Inclusion; People Of Color; Network; Racial Bias; Gender Bias; Entrepreneur; Entrepreneurial Ecosystems; Change; Change Barriers; Change Leadership; Community; Innovation; Pandemic; Impact; Systemic Racism; Minority-owned Businesses; Social and Collaborative Networks; Equity; Race; Small Business; Prejudice and Bias; Boston
- 2024
- Working Paper
Everyone Steps Back?: The Widespread Retraction of Crowd-Funding Support for Minority Creators When Migration Fear Is High
By: John (Jianqui) Bai, William R. Kerr, Chi Wan and Alptug Yorulmaz
We study racial biases on Kickstarter across multiple ethnic groups from 2009-2021. Scaling the concept of racially salient events, we quantify the close co-movement of minority funding gaps to inflamed political rhetoric surrounding migration. The racial funding gap... View Details
Bai, John (Jianqui), William R. Kerr, Chi Wan, and Alptug Yorulmaz. "Everyone Steps Back? The Widespread Retraction of Crowd-Funding Support for Minority Creators When Migration Fear Is High." Harvard Business School Working Paper, No. 23-046, January 2023. (Revised February 2024.)