Filter Results:
(63)
Show Results For
- All HBS Web
(265)
- Faculty Publications (63)
Show Results For
- All HBS Web
(265)
- Faculty Publications (63)
Page 1 of 63
Results →
- July–August 2024
- Article
Doing More with Less: Overcoming Ineffective Long-Term Targeting Using Short-Term Signals
By: Ta-Wei Huang and Eva Ascarza
Firms are increasingly interested in developing targeted interventions for customers with the best response,
which requires identifying differences in customer sensitivity, typically through the conditional average treatment
effect (CATE) estimation. In theory, to... View Details
Keywords: Long-run Targeting; Heterogeneous Treatment Effect; Statistical Surrogacy; Customer Churn; Field Experiments; Consumer Behavior; Customer Focus and Relationships; AI and Machine Learning; Marketing Strategy
Huang, Ta-Wei, and Eva Ascarza. "Doing More with Less: Overcoming Ineffective Long-Term Targeting Using Short-Term Signals." Marketing Science 43, no. 4 (July–August 2024): 863–884.
- June 2024
- Article
Rationalizing Outcomes: Interdependent Learning in Competitive Markets
By: Anoop R. Menon and Dennis Yao
In this article we use simulation models to explore interdependent learning in competitive markets. Such interactions require attention to both the mental representations held by the management of the focal firm as well as the beliefs of that management about the... View Details
Keywords: Mental Models; Strategic Interactions; Rationalization; Explanation-based View; Competition
Menon, Anoop R., and Dennis Yao. "Rationalizing Outcomes: Interdependent Learning in Competitive Markets." Strategy Science 9, no. 2 (June 2024): 97–117.
- 2024
- Working Paper
Design of Panel Experiments with Spatial and Temporal Interference
By: Tu Ni, Iavor Bojinov and Jinglong Zhao
One of the main practical challenges companies face when running experiments (or A/B tests) over a panel is interference, the setting where one experimental unit's treatment assignment at one time period impacts another's outcomes, possibly at the following time... View Details
Keywords: Research
Ni, Tu, Iavor Bojinov, and Jinglong Zhao. "Design of Panel Experiments with Spatial and Temporal Interference." Harvard Business School Working Paper, No. 24-058, March 2024.
- 2023
- Working Paper
Debiasing Treatment Effect Estimation for Privacy-Protected Data: A Model Auditing and Calibration Approach
By: Ta-Wei Huang and Eva Ascarza
Data-driven targeted interventions have become a powerful tool for organizations to optimize business outcomes
by utilizing individual-level data from experiments. A key element of this process is the estimation
of Conditional Average Treatment Effects (CATE), which... View Details
Huang, Ta-Wei, and Eva Ascarza. "Debiasing Treatment Effect Estimation for Privacy-Protected Data: A Model Auditing and Calibration Approach." Harvard Business School Working Paper, No. 24-034, December 2023.
- July 2023
- Article
Takahashi-Alexander Revisited: Modeling Private Equity Portfolio Outcomes Using Historical Simulations
By: Dawson Beutler, Alex Billias, Sam Holt, Josh Lerner and TzuHwan Seet
In 2001, Dean Takahashi and Seth Alexander of the Yale University Investments Office developed a deterministic model for estimating future cash flows and valuations for the Yale endowment’s private equity portfolio. Their model, which is simple and intuitive, is still... View Details
Beutler, Dawson, Alex Billias, Sam Holt, Josh Lerner, and TzuHwan Seet. "Takahashi-Alexander Revisited: Modeling Private Equity Portfolio Outcomes Using Historical Simulations." Journal of Portfolio Management 49, no. 7 (July 2023): 144–158.
- June 2023 (Revised September 2023)
- Simulation
Managing the Customer Journey Marketing Simulation: Adobe's Data-Driven Operating Model (DDOM)
By: Sunil Gupta, Rajiv Lal and Celine Chammas
Adobe started monitoring Annual Recurring Revenue (ARR), one of its primary metrics, when it shifted from selling its software in a box to selling the software as a subscription-based cloud service. They wanted to know when, where, and how much to invest in marketing.... View Details
- 2023
- Working Paper
Design-Based Confidence Sequences: A General Approach to Risk Mitigation in Online Experimentation
By: Dae Woong Ham, Michael Lindon, Martin Tingley and Iavor Bojinov
Randomized experiments have become the standard method for companies to evaluate the performance of new products or services. In addition to augmenting managers’ decision-making, experimentation mitigates risk by limiting the proportion of customers exposed to... View Details
Keywords: Performance Evaluation; Research and Development; Analytics and Data Science; Consumer Behavior
Ham, Dae Woong, Michael Lindon, Martin Tingley, and Iavor Bojinov. "Design-Based Confidence Sequences: A General Approach to Risk Mitigation in Online Experimentation." Harvard Business School Working Paper, No. 23-070, May 2023.
- April 2023
- Article
The Real Exchange Rate, Innovation and Productivity
By: Laura Alfaro, Alejandro Cuñat, Harald Fadinger and Yanping Liu
We evaluate manufacturing firms' responses to changes in the real exchange rate (RER) using detailed firm-level data for a large set of countries for the period 2001-2010. We uncover the following stylized facts about regional variation of manufacturing firms'... View Details
Keywords: Real Exchange Rate; Firm Level Data; Innovation; Productivity; Exporting; Importing; Credit Constraints; Currency Exchange Rate; Innovation and Invention; Performance Productivity
Alfaro, Laura, Alejandro Cuñat, Harald Fadinger, and Yanping Liu. "The Real Exchange Rate, Innovation and Productivity." Journal of the European Economic Association 21, no. 2 (April 2023): 637–689.
- February 2023 (Revised March 2024)
- Supplement
Shanty Real Estate: Teaching Note Supplement
By: Michael Luca and Jesse M. Shapiro
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
- 2023
- Working Paper
Distributionally Robust Causal Inference with Observational Data
By: Dimitris Bertsimas, Kosuke Imai and Michael Lingzhi Li
We consider the estimation of average treatment effects in observational studies and propose a new framework of robust causal inference with unobserved confounders. Our approach is based on distributionally robust optimization and proceeds in two steps. We first... View Details
Bertsimas, Dimitris, Kosuke Imai, and Michael Lingzhi Li. "Distributionally Robust Causal Inference with Observational Data." Working Paper, February 2023.
- November 2022
- Article
Measuring Inequality beyond the Gini Coefficient May Clarify Conflicting Findings
By: Kristin Blesch, Oliver P. Hauser and Jon M. Jachimowicz
Prior research has found mixed results on how economic inequality is related to various outcomes. These contradicting findings may in part stem from a predominant focus on the Gini coefficient, which only narrowly captures inequality. Here, we conceptualize the... View Details
Keywords: Economic Inequalty; Gini Coefficient; Income Inequality; Equality and Inequality; Social Issues; Health; Status and Position
Blesch, Kristin, Oliver P. Hauser, and Jon M. Jachimowicz. "Measuring Inequality beyond the Gini Coefficient May Clarify Conflicting Findings." Nature Human Behaviour 6, no. 11 (November 2022): 1525–1536.
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for Homebuyer 1
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Keywords: Data-driven Decision-making; Decisions; Negotiation; Bids and Bidding; Valuation; Consumer Behavior; Real Estate Industry
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for Homebuyer 1." Harvard Business School Exercise 923-016, October 2022.
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for Homebuyer 2
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for Homebuyer 2." Harvard Business School Exercise 923-017, October 2022.
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for Homebuyer 3
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for Homebuyer 3." Harvard Business School Exercise 923-018, October 2022.
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for iBuyer 1
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Keywords: Algorithm; Decision Choices and Conditions; Decision Making; Measurement and Metrics; Market Timing
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for iBuyer 1." Harvard Business School Exercise 923-019, October 2022.
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for iBuyer 2
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for iBuyer 2." Harvard Business School Exercise 923-020, October 2022.
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for iBuyer 3
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Keywords: Algorithm; Decision Choices and Conditions; Decision Making; Measurement and Metrics; Market Timing
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for iBuyer 3." Harvard Business School Exercise 923-021, October 2022.
- October 2022
- Exercise
Shanty Real Estate: Updated Confidential Information for Homebuyer
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Keywords: Algorithm; Decision Choices and Conditions; Decision Making; Market Timing; Measurement and Metrics
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Updated Confidential Information for Homebuyer." Harvard Business School Exercise 923-022, October 2022.
- October 2022
- Exercise
Shanty Real Estate: Updated Confidential Information for iBuyer
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Keywords: Algorithm; Decision Choices and Conditions; Measurement and Metrics; Market Timing; Decision Making
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Updated Confidential Information for iBuyer." Harvard Business School Exercise 923-023, October 2022.
- October–December 2022
- Article
Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem
By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed... View Details
Keywords: Machine Learning; Econometric Analysis; Instrumental Variable; Random Forest; Causal Inference; AI and Machine Learning; Forecasting and Prediction
Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." INFORMS Journal on Data Science 1, no. 2 (October–December 2022): 138–155.