Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (958) Arrow Down
Filter Results: (958) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (958)
    • People  (1)
    • News  (155)
    • Research  (640)
    • Events  (13)
    • Multimedia  (3)
  • Faculty Publications  (539)

Show Results For

  • All HBS Web  (958)
    • People  (1)
    • News  (155)
    • Research  (640)
    • Events  (13)
    • Multimedia  (3)
  • Faculty Publications  (539)
← Page 6 of 958 Results →
  • April 2017
  • Case

The Future of Patent Examination at the USPTO

By: Prithwiraj Choudhury, Tarun Khanna and Sarah Mehta
The U.S. Patent and Trademark Office (USPTO) is the federal government agency responsible for evaluating and granting patents and trademarks. In 2015, the USPTO employed approximately 8,000 patent examiners who granted nearly 300,000 patents to inventors. As of April... View Details
Keywords: Machine Learning; Telework; Collaborating With Unions; Human Resources; Recruitment; Retention; Intellectual Property; Copyright; Patents; Trademarks; Knowledge Sharing; Technology Adoption; Organizational Change and Adaptation; Performance Productivity; Performance Improvement; District of Columbia
Citation
Educators
Purchase
Related
Choudhury, Prithwiraj, Tarun Khanna, and Sarah Mehta. "The Future of Patent Examination at the USPTO." Harvard Business School Case 617-027, April 2017.
  • 2021
  • Working Paper

Time and the Value of Data

By: Ehsan Valavi, Joel Hestness, Newsha Ardalani and Marco Iansiti

Managers often believe that collecting more data will continually improve the accuracy of their machine learning models. However, we argue in this paper that when data lose relevance over time, it may be optimal to collect a limited amount of recent data instead of... View Details

Keywords: Economics Of AI; Machine Learning; Non-stationarity; Perishability; Value Depreciation; Analytics and Data Science; Value
Citation
SSRN
Read Now
Related
Valavi, Ehsan, Joel Hestness, Newsha Ardalani, and Marco Iansiti. "Time and the Value of Data." Harvard Business School Working Paper, No. 21-016, August 2020. (Revised November 2021.)
  • October 2023
  • Article

Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA

By: Matthew S. Johnson, David I. Levine and Michael W. Toffel
We study how a regulator can best target inspections. Our case study is a U.S. Occupational Safety and Health Administration (OSHA) program that randomly allocated some inspections. On average, each inspection averted 2.4 serious injuries (9%) over the next five years.... View Details
Keywords: Safety Regulations; Regulations; Regulatory Enforcement; Machine Learning Models; Safety; Operations; Service Operations; Production; Forecasting and Prediction; Decisions; United States
Citation
Find at Harvard
Read Now
Related
Johnson, Matthew S., David I. Levine, and Michael W. Toffel. "Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA." American Economic Journal: Applied Economics 15, no. 4 (October 2023): 30–67. (Profiled in the Regulatory Review.)
  • 14 Aug 2017
  • Conference Presentation

A Convex Framework for Fair Regression

By: Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel and Aaron Roth
We introduce a flexible family of fairness regularizers for (linear and logistic) regression problems. These regularizers all enjoy convexity, permitting fast optimization, and they span the range from notions of group fairness to strong individual fairness. By varying... View Details
Keywords: Regression Models; Machine Learning; Fairness; Framework; Mathematical Methods
Citation
Read Now
Related
Berk, Richard, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel, and Aaron Roth. "A Convex Framework for Fair Regression." Paper presented at the 4th Workshop on Fairness, Accountability, and Transparency in Machine Learning, Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), August 14, 2017.
  • 2022
  • Working Paper

The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective

By: Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu and Himabindu Lakkaraju
As various post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to develop a deeper understanding of if and when the explanations output by these methods disagree with each other, and how... View Details
Keywords: AI and Machine Learning; Analytics and Data Science; Mathematical Methods
Citation
Read Now
Related
Krishna, Satyapriya, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu, and Himabindu Lakkaraju. "The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective." Working Paper, 2022.
  • 2024
  • Article

Neyman Meets Causal Machine Learning: Experimental Evaluation of Individualized Treatment Rules

By: Michael Lingzhi Li and Kosuke Imai
A century ago, Neyman showed how to evaluate the efficacy of treatment using a randomized experiment under a minimal set of assumptions. This classical repeated sampling framework serves as a basis of routine experimental analyses conducted by today’s scientists across... View Details
Keywords: AI and Machine Learning; Research
Citation
Read Now
Related
Li, Michael Lingzhi, and Kosuke Imai. "Neyman Meets Causal Machine Learning: Experimental Evaluation of Individualized Treatment Rules." Journal of Causal Inference 12, no. 1 (2024).
  • Article

Towards Robust and Reliable Algorithmic Recourse

By: Sohini Upadhyay, Shalmali Joshi and Himabindu Lakkaraju
As predictive models are increasingly being deployed in high-stakes decision making (e.g., loan approvals), there has been growing interest in post-hoc techniques which provide recourse to affected individuals. These techniques generate recourses under the assumption... View Details
Keywords: Machine Learning Models; Algorithmic Recourse; Decision Making; Forecasting and Prediction
Citation
Read Now
Related
Upadhyay, Sohini, Shalmali Joshi, and Himabindu Lakkaraju. "Towards Robust and Reliable Algorithmic Recourse." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
  • Article

Counterfactual Explanations Can Be Manipulated

By: Dylan Slack, Sophie Hilgard, Himabindu Lakkaraju and Sameer Singh
Counterfactual explanations are useful for both generating recourse and auditing fairness between groups. We seek to understand whether adversaries can manipulate counterfactual explanations in an algorithmic recourse setting: if counterfactual explanations indicate... View Details
Keywords: Machine Learning Models; Counterfactual Explanations
Citation
Read Now
Related
Slack, Dylan, Sophie Hilgard, Himabindu Lakkaraju, and Sameer Singh. "Counterfactual Explanations Can Be Manipulated." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
  • November 2022
  • Article

A Language-Based Method for Assessing Symbolic Boundary Maintenance between Social Groups

By: Anjali M. Bhatt, Amir Goldberg and Sameer B. Srivastava
When the social boundaries between groups are breached, the tendency for people to erect and maintain symbolic boundaries intensifies. Drawing on extant perspectives on boundary maintenance, we distinguish between two strategies that people pursue in maintaining... View Details
Keywords: Culture; Machine Learning; Natural Language Processing; Symbolic Boundaries; Organizations; Boundaries; Social Psychology; Interpersonal Communication; Organizational Culture
Citation
Find at Harvard
Purchase
Related
Bhatt, Anjali M., Amir Goldberg, and Sameer B. Srivastava. "A Language-Based Method for Assessing Symbolic Boundary Maintenance between Social Groups." Sociological Methods & Research 51, no. 4 (November 2022): 1681–1720.
  • October–December 2022
  • Article

Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem

By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed... View Details
Keywords: Machine Learning; Econometric Analysis; Instrumental Variable; Random Forest; Causal Inference; AI and Machine Learning; Forecasting and Prediction
Citation
Find at Harvard
Register to Read
Related
Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." INFORMS Journal on Data Science 1, no. 2 (October–December 2022): 138–155.
  • 2024
  • Article

Learning Under Random Distributional Shifts

By: Kirk Bansak, Elisabeth Paulson and Dominik Rothenhäusler
Algorithmic assignment of refugees and asylum seekers to locations within host countries has gained attention in recent years, with implementations in the U.S. and Switzerland. These approaches use data on past arrivals to generate machine learning models that can... View Details
Keywords: AI and Machine Learning; Refugees; Employment
Citation
Read Now
Related
Bansak, Kirk, Elisabeth Paulson, and Dominik Rothenhäusler. "Learning Under Random Distributional Shifts." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 27th (2024).
  • Forthcoming
  • Article

Beefing IT Up for Your Investor? Engagement with Open Source Communities, Innovation, and Startup Funding: Evidence from GitHub

By: Annamaria Conti, Christian Peukert and Maria P. Roche
We study the engagement of nascent firms with open source communities and its implications for innovation and attracting funding. To do so, we link data on 160,065 U.S. startups from Crunchbase to their activities on the open source software development platform... View Details
Keywords: Startups; Knowledge; Open Source Communities; GitHub; Machine Learning; Innovation; Business Startups; Venture Capital; Information Technology; Strategy
Citation
Find at Harvard
Register to Read
Related
Conti, Annamaria, Christian Peukert, and Maria P. Roche. "Beefing IT Up for Your Investor? Engagement with Open Source Communities, Innovation, and Startup Funding: Evidence from GitHub." Organization Science (forthcoming). (Pre-published online March 7, 2025.)
  • July 2019 (Revised November 2019)
  • Case

Osaro: Picking the Best Path

By: William R. Kerr, James Palano and Bastiane Huang
The founder of Osaro saw the potential of deep reinforcement learning to allow robots to be applied to new applications. Osaro targeted warehousing, already a dynamic industry for robotics and automation, for its initial product—a system which would allow robotic arms... View Details
Keywords: Artificial Intelligence; Machine Learning; Robotics; Robots; Ecommerce; Fulfillment; Warehousing; AI; Startup; Technology Commercialization; Business Startups; Entrepreneurship; Logistics; Order Taking and Fulfillment; Information Technology; Commercialization; Learning; Complexity; Competition; E-commerce
Citation
Educators
Purchase
Related
Kerr, William R., James Palano, and Bastiane Huang. "Osaro: Picking the Best Path." Harvard Business School Case 820-012, July 2019. (Revised November 2019.)
  • November 2023 (Revised April 2024)
  • Case

Khanmigo: Revolutionizing Learning with GenAI

By: William A. Sahlman, Allison M. Ciechanover and Emily Grandjean
Already a leader in the edtech space since its 2008 launch, Khan Academy was now one of the first edtech organizations to embrace generative artificial intelligence ("genAI"). In March 2023, Khan Academy began beta testing Khanmigo, a genAI “guide” and tutor built with... View Details
Keywords: Technology Adoption; Leading Change; Entrepreneurship; Risk and Uncertainty; Education; AI and Machine Learning; Corporate Social Responsibility and Impact; Education Industry; Technology Industry; United States; San Francisco
Citation
Educators
Purchase
Related
Sahlman, William A., Allison M. Ciechanover, and Emily Grandjean. "Khanmigo: Revolutionizing Learning with GenAI." Harvard Business School Case 824-059, November 2023. (Revised April 2024.)
  • December 2020
  • Supplement

VIA Science (B)

By: Juan Alcácer, Rembrand Koning, Annelena Lobb and Kerry Herman
Via (a) captures the early days of the data analytics startup as founders Gounden and Ravanis considered which markets offer the right opportunities for their firm and what kinds of experiments will help them narrow their choice. Supplement Via (b) reveals the... View Details
Keywords: Data Analytics; Machine Learning; Artificial Intelligence; Strategy; Business Startups; AI and Machine Learning; Telecommunications Industry; Utilities Industry; United States; Japan
Citation
Purchase
Related
Alcácer, Juan, Rembrand Koning, Annelena Lobb, and Kerry Herman. "VIA Science (B)." Harvard Business School Supplement 721-368, December 2020.
  • Article

Who, When, and Why: A Machine Learning Approach to Prioritizing Students at Risk of Not Graduating High School on Time

By: Everaldo Aguiar, Himabindu Lakkaraju, Nasir Bhanpuri, David Miller, Ben Yuhas, Kecia Addison and Rayid Ghani
Citation
Read Now
Related
Aguiar, Everaldo, Himabindu Lakkaraju, Nasir Bhanpuri, David Miller, Ben Yuhas, Kecia Addison, and Rayid Ghani. "Who, When, and Why: A Machine Learning Approach to Prioritizing Students at Risk of Not Graduating High School on Time." Proceedings of the International Learning Analytics and Knowledge Conference 5th (2015).
  • October 2023 (Revised June 2024)
  • Case

ReUp Education: Can AI Help Learners Return to College?

By: Kris Ferreira, Christopher Thomas Ryan and Sarah Mehta
Founded in 2015, ReUp Education helps “stopped out students”—learners who have stopped making progress towards graduation—achieve their college completion goals. The company relies on a team of success coaches to engage with learners and help them reenroll. In 2019,... View Details
Keywords: AI; Algorithms; Machine Learning; Edtech; Education Technology; Analysis; Higher Education; AI and Machine Learning; Customization and Personalization; Failure; Education Industry; Technology Industry; United States
Citation
Educators
Purchase
Related
Ferreira, Kris, Christopher Thomas Ryan, and Sarah Mehta. "ReUp Education: Can AI Help Learners Return to College?" Harvard Business School Case 624-007, October 2023. (Revised June 2024.)
  • Article

Faithful and Customizable Explanations of Black Box Models

By: Himabindu Lakkaraju, Ece Kamar, Rich Caruana and Jure Leskovec
As predictive models increasingly assist human experts (e.g., doctors) in day-to-day decision making, it is crucial for experts to be able to explore and understand how such models behave in different feature subspaces in order to know if and when to trust them. To... View Details
Keywords: Interpretable Machine Learning; Black Box Models; Decision Making; Framework
Citation
Read Now
Related
Lakkaraju, Himabindu, Ece Kamar, Rich Caruana, and Jure Leskovec. "Faithful and Customizable Explanations of Black Box Models." Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (2019).
  • 2017
  • Working Paper

The Need for Speed: Effects of Uncertainty Reduction in Patenting

By: Mike Horia Teodorescu
Patents are essential in commerce to establish property rights for ideas and to give equal protection to firms that develop new technologies. Young firms especially depend on the protection of intellectual property to bring a product from concept to market. However,... View Details
Keywords: Startups; Natural Language Processing; Machine Learning; Patents; Business Startups; Risk and Uncertainty; Outcome or Result; Green Technology Industry
Citation
Related
Teodorescu, Mike Horia. "The Need for Speed: Effects of Uncertainty Reduction in Patenting." Working Paper, September 2017. (Job Market Paper.)
  • December 2020
  • Case

VIA Science (A)

By: Juan Alcácer, Rembrand Koning, Annelena Lobb and Kerry Herman
Via (a) captures the early days of the data analytics startup as founders Gounden and Ravanis considered which markets offer the right opportunities for their firm and what kinds of experiments will help them narrow their choice. Supplement Via (b) reveals the... View Details
Keywords: Data Analytics; Machine Learning; Artificial Intelligence; Strategy; Business Startups; Markets; AI and Machine Learning; Telecommunications Industry; Utilities Industry; United States; Japan
Citation
Educators
Purchase
Related
Alcácer, Juan, Rembrand Koning, Annelena Lobb, and Kerry Herman. "VIA Science (A)." Harvard Business School Case 721-367, December 2020.
  • ←
  • 6
  • 7
  • …
  • 47
  • 48
  • →
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.