Filter Results:
(97)
Show Results For
- All HBS Web
(492)
- Faculty Publications (97)
Show Results For
- All HBS Web
(492)
- Faculty Publications (97)
- May 9, 2023
- Article
8 Questions About Using AI Responsibly, Answered
By: Tsedal Neeley
Generative AI tools are poised to change the way every business operates. As your own organization begins strategizing which to use, and how, operational and ethical considerations are inevitable. This article delves into eight of them, including how your organization... View Details
Neeley, Tsedal. "8 Questions About Using AI Responsibly, Answered." Harvard Business Review (website) (May 9, 2023).
- 2024
- Working Paper
Using LLMs for Market Research
By: James Brand, Ayelet Israeli and Donald Ngwe
Large language models (LLMs) have rapidly gained popularity as labor-augmenting
tools for programming, writing, and many other processes that benefit from quick text
generation. In this paper we explore the uses and benefits of LLMs for researchers and
practitioners... View Details
Keywords: Large Language Model; Research; AI and Machine Learning; Analysis; Customers; Consumer Behavior; Technology Industry; Information Technology Industry
Brand, James, Ayelet Israeli, and Donald Ngwe. "Using LLMs for Market Research." Harvard Business School Working Paper, No. 23-062, April 2023. (Revised July 2024.)
- April 2023 (Revised February 2024)
- Case
AI Wars
By: Andy Wu, Matt Higgins, Miaomiao Zhang and Hang Jiang
In February 2024, the world was looking to Google to see what the search giant and long-time putative technical leader in artificial intelligence (AI) would do to compete in the massively hyped technology of generative AI. Over a year ago, OpenAI released ChatGPT, a... View Details
Keywords: AI; Artificial Intelligence; AI and Machine Learning; Technology Adoption; Competitive Strategy; Technological Innovation
Wu, Andy, Matt Higgins, Miaomiao Zhang, and Hang Jiang. "AI Wars." Harvard Business School Case 723-434, April 2023. (Revised February 2024.)
- March–April 2023
- Article
Pricing for Heterogeneous Products: Analytics for Ticket Reselling
By: Michael Alley, Max Biggs, Rim Hariss, Charles Herrmann, Michael Lingzhi Li and Georgia Perakis
Problem definition: We present a data-driven study of the secondary ticket market. In particular, we are primarily concerned with accurately estimating price sensitivity for listed tickets. In this setting, there are many issues including endogeneity, heterogeneity in... View Details
Keywords: Price; Demand and Consumers; AI and Machine Learning; Investment Return; Entertainment and Recreation Industry; Sports Industry
Alley, Michael, Max Biggs, Rim Hariss, Charles Herrmann, Michael Lingzhi Li, and Georgia Perakis. "Pricing for Heterogeneous Products: Analytics for Ticket Reselling." Manufacturing & Service Operations Management 25, no. 2 (March–April 2023): 409–426.
- 2023
- Working Paper
Sending Signals: Strategic Displays of Warmth and Competence
By: Bushra S. Guenoun and Julian J. Zlatev
Using a combination of exploratory and confirmatory approaches, this research examines how
people signal important information about themselves to others. We first train machine learning
models to assess the use of warmth and competence impression management... View Details
Keywords: AI and Machine Learning; Personal Characteristics; Perception; Interpersonal Communication
Guenoun, Bushra S., and Julian J. Zlatev. "Sending Signals: Strategic Displays of Warmth and Competence." Harvard Business School Working Paper, No. 23-051, February 2023.
- 8 Sep 2023
- Conference Presentation
Chatbots and Mental Health: Insights into the Safety of Generative AI
By: Julian De Freitas, K. Uguralp, Z. Uguralp and Stefano Puntoni
De Freitas, Julian, K. Uguralp, Z. Uguralp, and Stefano Puntoni. "Chatbots and Mental Health: Insights into the Safety of Generative AI." Paper presented at the Business & Generative AI Workshop, Wharton School, AI at Wharton, San Francisco, CA, United States, September 8, 2023.
- 2023
- Article
Experimental Evaluation of Individualized Treatment Rules
By: Kosuke Imai and Michael Lingzhi Li
The increasing availability of individual-level data has led to numerous applications of individualized (or personalized) treatment rules (ITRs). Policy makers often wish to empirically evaluate ITRs and compare their relative performance before implementing them in a... View Details
Keywords: Causal Inference; Heterogeneous Treatment Effects; Precision Medicine; Uplift Modeling; Analytics and Data Science; AI and Machine Learning
Imai, Kosuke, and Michael Lingzhi Li. "Experimental Evaluation of Individualized Treatment Rules." Journal of the American Statistical Association 118, no. 541 (2023): 242–256.
- December 2022 (Revised September 2024)
- Case
Sword Health
By: Regina E. Herzlinger, Annelena Lobb and Carin-Isabel Knoop
Virgilio “V” Bento, CEO of Sword Health—a startup that provided virtual physical therapy to patients in self-insured firms via AI and sensor technology with supervision by a physical therapist with a doctorate—considered how to increase its U.S. market share. To do so,... View Details
Keywords: Business Growth and Maturation; Competitive Strategy; Health Industry; Technology Industry
Herzlinger, Regina E., Annelena Lobb, and Carin-Isabel Knoop. "Sword Health." Harvard Business School Case 323-022, December 2022. (Revised September 2024.)
- December 2022 (Revised February 2023)
- Case
Akooda: Charging Toward Operational Intelligence
By: Christopher T. Stanton and Mel Martin
The Akooda case describes the challenges confronting founder and CEO Yuval Gonczarowski (MBA ‘17) in 2022 as he attempts to boost sales. Launched in November 2020, Akooda was an AI company that mined 20 different sources of digital data, from tools like Slack, Google... View Details
Keywords: Data Mining; Productivity; Monitoring; Data Analysis; AI and Machine Learning; Knowledge Management; Operations; Problems and Challenges; Employee Relationship Management; Information Technology Industry; Technology Industry; Information Industry; Boston; Israel
Stanton, Christopher T., and Mel Martin. "Akooda: Charging Toward Operational Intelligence." Harvard Business School Case 823-018, December 2022. (Revised February 2023.)
- November–December 2022
- Article
Can AI Really Help You Sell?: It Can, Depending on When and How You Implement It
By: Jim Dickie, Boris Groysberg, Benson P. Shapiro and Barry Trailer
Many salespeople today are struggling; only 57% of them make their annual quotas, surveys show. One problem is that buying processes have evolved faster than selling processes, and buyers today can access a wide range of online resources that let them evaluate products... View Details
Dickie, Jim, Boris Groysberg, Benson P. Shapiro, and Barry Trailer. "Can AI Really Help You Sell? It Can, Depending on When and How You Implement It." Harvard Business Review 100, no. 6 (November–December 2022): 120–129.
- October–December 2022
- Article
Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem
By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed... View Details
Keywords: Machine Learning; Econometric Analysis; Instrumental Variable; Random Forest; Causal Inference; AI and Machine Learning; Forecasting and Prediction
Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." INFORMS Journal on Data Science 1, no. 2 (October–December 2022): 138–155.
- May 2022 (Revised July 2022)
- Case
The Voice War Continues: Hey Google vs. Alexa vs. Siri in 2022
By: David B. Yoffie and Daniel Fisher
In 2022, after five years of pursuing a new "AI-first" strategy, Google had captured a sizeable share of the American and global markets for voice assistants. Google Assistant was used by hundreds of millions of users around the world, but Amazon retained the largest... View Details
Keywords: Strategy; Artificial Intelligence; Deep Learning; Voice Assistants; Smart Home; Market Share; Globalized Markets and Industries; Competitive Strategy; Digital Platforms; AI and Machine Learning; Technology Industry; United States
Yoffie, David B., and Daniel Fisher. "The Voice War Continues: Hey Google vs. Alexa vs. Siri in 2022." Harvard Business School Case 722-462, May 2022. (Revised July 2022.)
- 2022
- Working Paper
Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments
By: Kosuke Imai and Michael Lingzhi Li
Researchers are increasingly turning to machine learning (ML) algorithms to investigate causal heterogeneity in randomized experiments. Despite their promise, ML algorithms may fail to accurately ascertain heterogeneous treatment effects under practical settings with... View Details
Imai, Kosuke, and Michael Lingzhi Li. "Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments." Working Paper, March 2022.
- 2022
- Working Paper
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
By: Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu and Himabindu Lakkaraju
As various post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to develop a deeper understanding of if and when the explanations output by these methods disagree with each other, and how... View Details
Krishna, Satyapriya, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu, and Himabindu Lakkaraju. "The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective." Working Paper, 2022.
- 2022
- Working Paper
TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations
By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet they have become more complex and harder to understand. To address this issue, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use explainability... View Details
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations." Working Paper, 2022.
- December 2021
- Case
Slice Labs: Creating a Fraud-free Online Insurance Platform
By: Amit Goldenberg, Max Bazerman and Ruth Page
"Slice Labs: Creating a Fraud-Free Online Insurance Platform" engages students with the challenge of how to influence other parties to not engage in fraud in the context of digital insurance. The case is centered around Slice, a digital insurance company that was... View Details
Keywords: Technology; Insurance; Digitization; Honesty; Negotiation; Fraud; Ethics; Negotiation Process; Negotiation Tactics; Negotiation Types; Social Psychology; Conflict and Resolution; Trust; Fairness; Moral Sensibility; Values and Beliefs; Crime and Corruption; Insurance Industry; Technology Industry; United States; Canada
Goldenberg, Amit, Max Bazerman, and Ruth Page. "Slice Labs: Creating a Fraud-free Online Insurance Platform." Harvard Business School Multimedia/Video Case 921-712, December 2021.
- Article
Adaptive Machine Unlearning
By: Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi and Chris Waites
Data deletion algorithms aim to remove the influence of deleted data points from trained models at a cheaper computational cost than fully retraining those models. However, for sequences of deletions, most prior work in the non-convex setting gives valid guarantees... View Details
Gupta, Varun, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris Waites. "Adaptive Machine Unlearning." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
- 2021
- Article
ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation
By: Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Julian De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, Kuno Kim, Elias Wang, Michael Lingelbach, Aidan Curtis, Kevin Feigelis, Daniel M. Bear, Dan Gutfreund, David Cox, Antonio Torralba, James J. DiCarlo, Joshua B. Tenenbaum, Josh H. McDermott and Daniel L.K. Yamins
We introduce ThreeDWorld (TDW), a platform for interactive multi-modal physical simulation. TDW enables simulation of high-fidelity sensory data and physical interactions between mobile agents and objects in rich 3D environments. Unique properties include: real-time... View Details
Keywords: Artificial Intelligence; Platform; Interactive Physical Simulation; Virtual Environment; Multi-modal; AI and Machine Learning
Gan, Chuang, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Julian De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, Kuno Kim, Elias Wang, Michael Lingelbach, Aidan Curtis, Kevin Feigelis, Daniel M. Bear, Dan Gutfreund, David Cox, Antonio Torralba, James J. DiCarlo, Joshua B. Tenenbaum, Josh H. McDermott, and Daniel L.K. Yamins. "ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation." Conference on Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks Track 35th (2021).
- October 2021 (Revised December 2021)
- Case
Customer-Centric Design with Artificial Intelligence: Commonwealth Bank
By: Karim R. Lakhani, Yael Grushka-Cockayne, Jin Hyun Paik and Steven Randazzo
As Commonwealth Bank (CommBank) CEO Matt Comyn delivered the full financial year results in August 2021 over videoconference, it took less than two minutes for him to make his first mention of the organization's Customer Engagement Engine (CEE), the AI-driven customer... View Details
Keywords: Artificial Intelligence; Customer-centricity; Banks and Banking; Customer Focus and Relationships; Technological Innovation; Transformation; Organizational Change and Adaptation; Performance; AI and Machine Learning; Financial Services Industry; Australia
Lakhani, Karim R., Yael Grushka-Cockayne, Jin Hyun Paik, and Steven Randazzo. "Customer-Centric Design with Artificial Intelligence: Commonwealth Bank." Harvard Business School Case 622-065, October 2021. (Revised December 2021.)
- 2021
- Working Paper
Time Dependency, Data Flow, and Competitive Advantage
Data is fundamental to machine learning-based products and services and is considered strategic due to its externalities for businesses, governments, non-profits, and more generally for society. It is renowned that the value of organizations (businesses, government... View Details
Keywords: Economics Of AI; Value Of Data; Perishability; Time Dependency; Flow Of Data; Data Strategy; Analytics and Data Science; Value; Strategy; Competitive Advantage
Valavi, Ehsan, Joel Hestness, Marco Iansiti, Newsha Ardalani, Feng Zhu, and Karim R. Lakhani. "Time Dependency, Data Flow, and Competitive Advantage." Harvard Business School Working Paper, No. 21-099, March 2021.