Filter Results:
(611)
Show Results For
- All HBS Web
(1,805)
- Faculty Publications (611)
Show Results For
- All HBS Web
(1,805)
- Faculty Publications (611)
Analytic
→
- 2023
- Working Paper
Design-Based Confidence Sequences: A General Approach to Risk Mitigation in Online Experimentation
By: Dae Woong Ham, Michael Lindon, Martin Tingley and Iavor Bojinov
Randomized experiments have become the standard method for companies to evaluate the performance of new products or services. In addition to augmenting managers’ decision-making, experimentation mitigates risk by limiting the proportion of customers exposed to... View Details
Keywords: Performance Evaluation; Research and Development; Analytics and Data Science; Consumer Behavior
Ham, Dae Woong, Michael Lindon, Martin Tingley, and Iavor Bojinov. "Design-Based Confidence Sequences: A General Approach to Risk Mitigation in Online Experimentation." Harvard Business School Working Paper, No. 23-070, May 2023.
- May–June 2023
- Article
Analytics for Marketers: When to Rely on Algorithms and When to Trust Your Gut
By: Fabrizio Fantini and Das Narayandas
Advanced analytics can help companies solve a host of management problems, including those related to marketing, sales, and supply-chain operations, which can lead to a sustainable competitive advantage. But as more data becomes available and advanced analytics are... View Details
Fantini, Fabrizio, and Das Narayandas. "Analytics for Marketers: When to Rely on Algorithms and When to Trust Your Gut." Harvard Business Review 101, no. 3 (May–June 2023): 82–91.
- 2023
- Article
Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators
By: Benjamin Jakubowski, Siram Somanchi, Edward McFowland III and Daniel B. Neill
Regression discontinuity (RD) designs are widely used to estimate causal effects in the absence of a randomized experiment. However, standard approaches to RD analysis face two significant limitations. First, they require a priori knowledge of discontinuities in... View Details
Jakubowski, Benjamin, Siram Somanchi, Edward McFowland III, and Daniel B. Neill. "Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators." Journal of Machine Learning Research 24, no. 133 (2023): 1–57.
- May–June 2023
- Article
Unmasking Behaviors During the Pandemic with Video Analytics
By: Shunyuan Zhang, Kaiquan Xu and Kannan Srinivasan
In 2020, as the novel coronavirus spread globally, face masks were recommended in public settings to protect against and slow down viral transmission. People complied to varying extents, and their reactions may have been driven by a variety of psychological factors.... View Details
Zhang, Shunyuan, Kaiquan Xu, and Kannan Srinivasan. "Unmasking Behaviors During the Pandemic with Video Analytics." Marketing Science 42, no. 3 (May–June 2023): 440–450.
- April 2023
- Technical Note
An Art & A Science: How to Apply Design Thinking to Data Science Challenges
By: Michael Parzen, Eddie Lin, Douglas Ng and Jessie Li
We hear it all the time as managers: “what is the data that backs up your decisions?” Even local mom-and-pop shops now have access to complex point-of-sale systems that can closely track sales and customer data. Social media influencers have turned into seven-figure... View Details
Parzen, Michael, Eddie Lin, Douglas Ng, and Jessie Li. "An Art & A Science: How to Apply Design Thinking to Data Science Challenges." Harvard Business School Technical Note 623-070, April 2023.
- April 2023
- Case
Fizzy Fusion: When Data-Driven Decision Making Failed
By: Michael Parzen, Eddie Lin, Douglas Ng and Jessie Li
This is a case about a fictional New York beverage company called Fizzy Fusion. The business is facing supply chain and inventory management challenges with its new product, SparklingSip. Despite seeking help from a data science consulting firm, the machine learning... View Details
Keywords: Supply Chain Management; Production; Risk and Uncertainty; Analytics and Data Science; Food and Beverage Industry
Parzen, Michael, Eddie Lin, Douglas Ng, and Jessie Li. "Fizzy Fusion: When Data-Driven Decision Making Failed." Harvard Business School Case 623-071, April 2023.
- 2023
- Working Paper
Corporate Website-based Measures of Firms' Value Drivers
By: Wei Cai, Dennis Campbell and Patrick Ferguson
We develop and validate new text-based measures of firms’ financial and non-financial value drivers. Using the Wayback Machine to access public US firms’ archived websites from 1995-2020, we scrape text from corporate homepages. We use Kaplan and Norton’s (1992)... View Details
Cai, Wei, Dennis Campbell, and Patrick Ferguson. "Corporate Website-based Measures of Firms' Value Drivers." SSRN Working Paper Series, No. 4413808, April 2023.
- 2023
- Working Paper
Feature Importance Disparities for Data Bias Investigations
By: Peter W. Chang, Leor Fishman and Seth Neel
It is widely held that one cause of downstream bias in classifiers is bias present in the training data. Rectifying such biases may involve context-dependent interventions such as training separate models on subgroups, removing features with bias in the collection... View Details
Chang, Peter W., Leor Fishman, and Seth Neel. "Feature Importance Disparities for Data Bias Investigations." Working Paper, March 2023.
- March–April 2023
- Article
Pricing for Heterogeneous Products: Analytics for Ticket Reselling
By: Michael Alley, Max Biggs, Rim Hariss, Charles Herrmann, Michael Lingzhi Li and Georgia Perakis
Problem definition: We present a data-driven study of the secondary ticket market. In particular, we are primarily concerned with accurately estimating price sensitivity for listed tickets. In this setting, there are many issues including endogeneity, heterogeneity in... View Details
Keywords: Price; Demand and Consumers; AI and Machine Learning; Investment Return; Entertainment and Recreation Industry; Sports Industry
Alley, Michael, Max Biggs, Rim Hariss, Charles Herrmann, Michael Lingzhi Li, and Georgia Perakis. "Pricing for Heterogeneous Products: Analytics for Ticket Reselling." Manufacturing & Service Operations Management 25, no. 2 (March–April 2023): 409–426.
- 2023
- Working Paper
PRIMO: Private Regression in Multiple Outcomes
By: Seth Neel
We introduce a new differentially private regression setting we call Private Regression in Multiple Outcomes (PRIMO), inspired the common situation where a data analyst wants to perform a set of l regressions while preserving privacy, where the covariates... View Details
Neel, Seth. "PRIMO: Private Regression in Multiple Outcomes." Working Paper, March 2023.
- March 2023
- Supplement
Allianz Türkiye (B): Adapting to a Changing World
By: John D. Macomber and Fares Khrais
Keywords: Insurance And Reinsurance; Natural Disasters; Turkey; Insurance; Climate Change; Analytics and Data Science; Insurance Industry; Financial Services Industry; Turkey
Macomber, John D., and Fares Khrais. "Allianz Türkiye (B): Adapting to a Changing World." Harvard Business School Supplement 223-076, March 2023.
- March 2023
- Supplement
Allianz Türkiye (C): Managing the 2017 Hail Storm
By: John D. Macomber and Fares Khrais
Allianz Turkey is a property casualty insurance company operating in a region experiencing increasing losses from natural catastrophe events related to climate change, for example hail, wildfire, and flooding. There are also substantial other natural catastrophe... View Details
Keywords: Insurance And Reinsurance; Natural Disasters; Turkey; Insurance; Climate Change; Analytics and Data Science; Insurance Industry; Financial Services Industry; Turkey
Macomber, John D., and Fares Khrais. "Allianz Türkiye (C): Managing the 2017 Hail Storm." Harvard Business School Supplement 223-084, March 2023.
- March 2023 (Revised April 2024)
- Case
Allianz Türkiye: Adapting to Climate Change
By: John D. Macomber and Fares Khrais
Allianz Turkey is a property casualty insurance company operating in a region experiencing increasing losses from natural catastrophe events related to climate change, for example hail, wildfire, and flooding. There are also substantial other natural catastrophe... View Details
Keywords: Insurance And Reinsurance; Natural Disasters; Turkey; Insurance; Climate Change; Analytics and Data Science; Insurance Industry; Financial Services Industry; Turkey
Macomber, John D., and Fares Khrais. "Allianz Türkiye: Adapting to Climate Change." Harvard Business School Case 223-074, March 2023. (Revised April 2024.)
- 2023
- Chapter
Marketing Through the Machine’s Eyes: Image Analytics and Interpretability
By: Shunyuan Zhang, Flora Feng and Kannan Srinivasan
he growth of social media and the sharing economy is generating abundant unstructured image and video data. Computer vision techniques can derive rich insights from unstructured data and can inform recommendations for increasing profits and consumer utility—if only the... View Details
Zhang, Shunyuan, Flora Feng, and Kannan Srinivasan. "Marketing Through the Machine’s Eyes: Image Analytics and Interpretability." Chap. 8 in Artificial Intelligence in Marketing. 20, edited by Naresh K. Malhotra, K. Sudhir, and Olivier Toubia, 217–238. Review of Marketing Research. Emerald Publishing Limited, 2023.
- March–April 2023
- Article
Market Segmentation Trees
By: Ali Aouad, Adam Elmachtoub, Kris J. Ferreira and Ryan McNellis
Problem definition: We seek to provide an interpretable framework for segmenting users in a population for personalized decision making. Methodology/results: We propose a general methodology, market segmentation trees (MSTs), for learning market... View Details
Keywords: Decision Trees; Computational Advertising; Market Segmentation; Analytics and Data Science; E-commerce; Consumer Behavior; Marketplace Matching; Marketing Channels; Digital Marketing
Aouad, Ali, Adam Elmachtoub, Kris J. Ferreira, and Ryan McNellis. "Market Segmentation Trees." Manufacturing & Service Operations Management 25, no. 2 (March–April 2023): 648–667.
- 2023
- Working Paper
Senior Team Emotional Dynamics and Strategic Decision Making at a Platform Transition
By: Timo O. Vuori and Michael L. Tushman
Based on an inductive case study, we develop an emotional-temporal process model of an incumbent’s
strategic decision making at a platform transition. We describe the senior team’s emotional response to
this transition and the impact of these emotions on their... View Details
Vuori, Timo O., and Michael L. Tushman. "Senior Team Emotional Dynamics and Strategic Decision Making at a Platform Transition." Harvard Business School Working Paper, No. 23-054, March 2023.
- January–February 2023
- Article
Forecasting COVID-19 and Analyzing the Effect of Government Interventions
By: Michael Lingzhi Li, Hamza Tazi Bouardi, Omar Skali Lami, Thomas Trikalinos, Nikolaos Trichakis and Dimitris Bertsimas
We developed DELPHI, a novel epidemiological model for predicting detected cases and deaths in the prevaccination era of the COVID-19 pandemic. The model allows for underdetection of infections and effects of government interventions. We have applied DELPHI across more... View Details
Keywords: COVID-19 Pandemic; Epidemics; Analytics and Data Science; Health Pandemics; AI and Machine Learning; Forecasting and Prediction
Li, Michael Lingzhi, Hamza Tazi Bouardi, Omar Skali Lami, Thomas Trikalinos, Nikolaos Trichakis, and Dimitris Bertsimas. "Forecasting COVID-19 and Analyzing the Effect of Government Interventions." Operations Research 71, no. 1 (January–February 2023): 184–201.
- February 2023
- Article
National Models of Climate Governance Among Major Emitters
By: Johnathan Guy, Esther Shears and Jonas Meckling
National climate institutions structure the process of climate mitigation policymaking and shape climate policy ambition and performance. Countries have, for example, been building science bodies, passing climate laws and creating new agencies. Here we provide the... View Details
Guy, Johnathan, Esther Shears, and Jonas Meckling. "National Models of Climate Governance Among Major Emitters." Nature Climate Change 13, no. 2 (February 2023): 189–195.
- 2023
- Article
Evaluating Explainability for Graph Neural Networks
By: Chirag Agarwal, Owen Queen, Himabindu Lakkaraju and Marinka Zitnik
As explanations are increasingly used to understand the behavior of graph neural networks (GNNs), evaluating the quality and reliability of GNN explanations is crucial. However, assessing the quality of GNN explanations is challenging as existing graph datasets have no... View Details
Keywords: Analytics and Data Science
Agarwal, Chirag, Owen Queen, Himabindu Lakkaraju, and Marinka Zitnik. "Evaluating Explainability for Graph Neural Networks." Art. 114. Scientific Data 10 (2023).
- 2023
- Article
Experimental Evaluation of Individualized Treatment Rules
By: Kosuke Imai and Michael Lingzhi Li
The increasing availability of individual-level data has led to numerous applications of individualized (or personalized) treatment rules (ITRs). Policy makers often wish to empirically evaluate ITRs and compare their relative performance before implementing them in a... View Details
Keywords: Causal Inference; Heterogeneous Treatment Effects; Precision Medicine; Uplift Modeling; Analytics and Data Science; AI and Machine Learning
Imai, Kosuke, and Michael Lingzhi Li. "Experimental Evaluation of Individualized Treatment Rules." Journal of the American Statistical Association 118, no. 541 (2023): 242–256.