Filter Results:
(169)
Show Results For
- All HBS Web
(1,266)
- Faculty Publications (169)
Show Results For
- All HBS Web
(1,266)
- Faculty Publications (169)
- 2022
- Working Paper
TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations
By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet they have become more complex and harder to understand. To address this issue, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use explainability... View Details
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations." Working Paper, 2022.
- Article
A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects
By: Edward McFowland III, Sandeep Gangarapu, Ravi Bapna and Tianshu Sun
We define a prescriptive analytics framework that addresses the needs of a constrained decision-maker facing, ex ante, unknown costs and benefits of multiple policy levers. The framework is general in nature and can be deployed in any utility maximizing context, public... View Details
Keywords: Prescriptive Analytics; Heterogeneous Treatment Effects; Optimization; Observed Rank Utility Condition (OUR); Between-treatment Heterogeneity; Machine Learning; Decision Making; Analysis; Mathematical Methods
McFowland III, Edward, Sandeep Gangarapu, Ravi Bapna, and Tianshu Sun. "A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects." MIS Quarterly 45, no. 4 (December 2021): 1807–1832.
- Article
Counterfactual Explanations Can Be Manipulated
By: Dylan Slack, Sophie Hilgard, Himabindu Lakkaraju and Sameer Singh
Counterfactual explanations are useful for both generating recourse and auditing fairness between groups. We seek to understand whether adversaries can manipulate counterfactual explanations in an algorithmic recourse setting: if counterfactual explanations indicate... View Details
Slack, Dylan, Sophie Hilgard, Himabindu Lakkaraju, and Sameer Singh. "Counterfactual Explanations Can Be Manipulated." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
- Article
Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
By: Dylan Slack, Sophie Hilgard, Sameer Singh and Himabindu Lakkaraju
As black box explanations are increasingly being employed to establish model credibility in high stakes settings, it is important to ensure that these explanations are accurate and reliable. However, prior work demonstrates that explanations generated by... View Details
Keywords: Black Box Explanations; Bayesian Modeling; Decision Making; Risk and Uncertainty; Information Technology
Slack, Dylan, Sophie Hilgard, Sameer Singh, and Himabindu Lakkaraju. "Reliable Post hoc Explanations: Modeling Uncertainty in Explainability." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
- October 1, 2021
- Article
An Evaluation of Cross-efficiency Methods: With an Application to Warehouse Performance.
By: B.M. Balk, M.R. De Koster, Christian Kaps and J.L. Zofio
Cross-efficiency measurement is an extension of Data Envelopment Analysis that allows for tie-breaking ranking of the Decision Making Units (DMUs) using all the peer evaluations. In this article we examine the theory of cross-efficiency measurement by comparing a... View Details
Keywords: Efficiency Analysis; Performance Benchmarking; Warehousing; Analytics and Data Science; Performance Evaluation; Measurement and Metrics; Mathematical Methods
Balk, B.M., M.R. De Koster, Christian Kaps, and J.L. Zofio. "An Evaluation of Cross-efficiency Methods: With an Application to Warehouse Performance." Art. 126261. Applied Mathematics and Computation 406 (October 1, 2021).
- October 2021
- Article
Board Design and Governance Failures at Peer Firms
By: Shelby Gai, J. Yo-Jud Cheng and Andy Wu
Our study introduces board committees as a crucial determinant of board actions. We examine how directors who structurally link different board committees—referred to as multi-committee directors (MCDs)—explain why some board actions are merely symbolic while others... View Details
Keywords: Board Committees; Board Monitoring; New Director Nomination; Peer Financial Restatements; Governing and Advisory Boards; Corporate Governance; Performance Effectiveness
Gai, Shelby, J. Yo-Jud Cheng, and Andy Wu. "Board Design and Governance Failures at Peer Firms." Strategic Management Journal 42, no. 10 (October 2021): 1909–1938.
- September 15, 2021
- Article
Improving Deconvolution Methods in Biology Through Open Innovation Competitions: An Application to the Connectivity Map
By: Andrea Blasco, Ted Natoli, Michael G. Endres, Rinat A. Sergeev, Steven Randazzo, Jin Hyun Paik, N.J. Maximilian Macaluso, Rajiv Narayan, Xiaodong Lu, David Peck, Karim R. Lakhani and Aravind Subramanian
A recurring problem in biomedical research is how to isolate signals of distinct populations (cell types, tissues, and genes) from composite measures obtained by a single analyte or sensor. Existing computational deconvolution approaches work well in many specific... View Details
Keywords: Deconvolution; Methods; Open Innovation Competition; Genomics; Research; Innovation and Invention
Blasco, Andrea, Ted Natoli, Michael G. Endres, Rinat A. Sergeev, Steven Randazzo, Jin Hyun Paik, N.J. Maximilian Macaluso, Rajiv Narayan, Xiaodong Lu, David Peck, Karim R. Lakhani, and Aravind Subramanian. "Improving Deconvolution Methods in Biology Through Open Innovation Competitions: An Application to the Connectivity Map." Bioinformatics 37, no. 18 (September 15, 2021).
- September 2021
- Article
Diagnostic Bubbles
By: Pedro Bordalo, Nicola Gennaioli, Spencer Yongwook Kwon and Andrei Shleifer
We introduce diagnostic expectations into a standard setting of price formation in which investors learn about the fundamental value of an asset and trade it. We study the interaction of diagnostic expectations with two well-known mechanisms: learning from prices and... View Details
Bordalo, Pedro, Nicola Gennaioli, Spencer Yongwook Kwon, and Andrei Shleifer. "Diagnostic Bubbles." Journal of Financial Economics 141, no. 3 (September 2021).
- Fall 2021
- Article
When to Go and How to Go? Founder and Leader Transitions in Private Equity Firms
By: Josh Lerner and Diana Noble
Leadership transition in private equity firms is an understudied field, despite the important, albeit controversial, role such firms play in developed economies. We analyzed 260 firms in an empirical study, supplemented by qualitative interviews with a small sample of... View Details
Lerner, Josh, and Diana Noble. "When to Go and How to Go? Founder and Leader Transitions in Private Equity Firms." Journal of Alternative Investments 24, no. 2 (Fall 2021): 9–30.
- August 2021 (Revised September 2022)
- Case
Patch Technology: Making It Easy to Do the Right Thing
By: Tomomichi Amano, Robert J. Dolan and Carol Zhang
In 2021, the growing threat of climate change pushed companies around the world to understand that significant behavioral change was necessary. While many recognized that decreasing emissions was critical, more sophisticated players such as Microsoft began to recognize... View Details
Amano, Tomomichi, Robert J. Dolan, and Carol Zhang. "Patch Technology: Making It Easy to Do the Right Thing." Harvard Business School Case 522-037, August 2021. (Revised September 2022.)
- August 2021
- Article
Crowdsourcing Memories: Mixed Methods Research by Cultural Insiders-Epistemological Outsiders
By: Tarun Khanna, Karim R. Lakhani, Shubhangi Bhadada, Nabil Khan, Saba Kohli Davé, Rasim Alam and Meena Hewett
This paper examines the role that the two lead authors’ personal connections played in the research methodology and data collection for the Partition Stories Project—a mixed-methods approach to revisiting the much-studied historical trauma of the Partition of British... View Details
Keywords: Mixed Methods; Insider-outsiders; Myth Of Informed Objectivity; Hybrid Research; Oral Narratives; Research; Analysis; India
Khanna, Tarun, Karim R. Lakhani, Shubhangi Bhadada, Nabil Khan, Saba Kohli Davé, Rasim Alam, and Meena Hewett. "Crowdsourcing Memories: Mixed Methods Research by Cultural Insiders-Epistemological Outsiders." Academy of Management Perspectives 35, no. 3 (August 2021): 384–399.
- August 2021
- Article
Multiple Imputation Using Gaussian Copulas
By: F.M. Hollenbach, I. Bojinov, S. Minhas, N.W. Metternich, M.D. Ward and A. Volfovsky
Missing observations are pervasive throughout empirical research, especially in the social sciences. Despite multiple approaches to dealing adequately with missing data, many scholars still fail to address this vital issue. In this paper, we present a simple-to-use... View Details
Hollenbach, F.M., I. Bojinov, S. Minhas, N.W. Metternich, M.D. Ward, and A. Volfovsky. "Multiple Imputation Using Gaussian Copulas." Special Issue on New Quantitative Approaches to Studying Social Inequality. Sociological Methods & Research 50, no. 3 (August 2021): 1259–1283. (0049124118799381.)
- August 2021
- Article
The Undervalued Power of Self-relevant Research: The Case of Researching Retirement While Retiring
By: Teresa M. Amabile and Douglas T. (Tim) Hall
For decades, training in management research has emphasized objectivity, typically viewed as an arm’s length distance between the topic of the research and the interests of the researcher. This emphasis has led most scholars to avoid research topics of deep personal... View Details
Keywords: Qualitative Research Methods; Case Research Methods; Organizational Behavior; Careers; Career Changes And Transitions; Self-relevant Research; Research; Personal Development and Career; Transition; Identity; Retirement
Amabile, Teresa M., and Douglas T. (Tim) Hall. "The Undervalued Power of Self-relevant Research: The Case of Researching Retirement While Retiring." Academy of Management Perspectives 35, no. 3 (August 2021): 347–366.
- Article
Learning Models for Actionable Recourse
By: Alexis Ross, Himabindu Lakkaraju and Osbert Bastani
As machine learning models are increasingly deployed in high-stakes domains such as legal and financial decision-making, there has been growing interest in post-hoc methods for generating counterfactual explanations. Such explanations provide individuals adversely... View Details
Ross, Alexis, Himabindu Lakkaraju, and Osbert Bastani. "Learning Models for Actionable Recourse." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
- 2021
- Working Paper
Population Interference in Panel Experiments
By: Iavor I Bojinov, Kevin Wu Han and Guillaume Basse
The phenomenon of population interference, where a treatment assigned to one experimental unit affects another experimental unit's outcome, has received considerable attention in standard randomized experiments. The complications produced by population interference in... View Details
Bojinov, Iavor I., Kevin Wu Han, and Guillaume Basse. "Population Interference in Panel Experiments." Harvard Business School Working Paper, No. 21-100, March 2021.
- 2021
- Working Paper
How Much Should We Trust Staggered Difference-In-Differences Estimates?
By: Andrew C. Baker, David F. Larcker and Charles C.Y. Wang
Difference-in-differences analysis with staggered treatment timing is frequently used to assess the impact of policy changes on corporate outcomes in academic research. However, recent advances in econometric theory show that such designs are likely to be biased in the... View Details
Keywords: Difference In Differences; Staggered Difference-in-differences Designs; Generalized Difference-in-differences; Dynamic Treatment Effects; Mathematical Methods
Baker, Andrew C., David F. Larcker, and Charles C.Y. Wang. "How Much Should We Trust Staggered Difference-In-Differences Estimates?" European Corporate Governance Institute Finance Working Paper, No. 736/2021, February 2021. (Harvard Business School Working Paper, No. 21-112, April 2021.)
- 2021
- Article
Fair Algorithms for Infinite and Contextual Bandits
By: Matthew Joseph, Michael J Kearns, Jamie Morgenstern, Seth Neel and Aaron Leon Roth
We study fairness in linear bandit problems. Starting from the notion of meritocratic fairness introduced in Joseph et al. [2016], we carry out a more refined analysis of a more general problem, achieving better performance guarantees with fewer modelling assumptions... View Details
Joseph, Matthew, Michael J Kearns, Jamie Morgenstern, Seth Neel, and Aaron Leon Roth. "Fair Algorithms for Infinite and Contextual Bandits." Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society 4th (2021).
- Article
Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses
By: Kaivalya Rawal and Himabindu Lakkaraju
As predictive models are increasingly being deployed in high-stakes decision-making, there has been a lot of interest in developing algorithms which can provide recourses to affected individuals. While developing such tools is important, it is even more critical to... View Details
Rawal, Kaivalya, and Himabindu Lakkaraju. "Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses." Advances in Neural Information Processing Systems (NeurIPS) 33 (2020).
- November 2020 (Revised March 2022)
- Teaching Note
Social Salary Setting at Spiber
By: Ashley Whillans and John Beshears
Teaching Note for HBS Case No. 920-050. The case tells the story of Spiber, a Japanese technology start-up company. To reflect the company’s values, the leadership team implemented a new and unique salary-setting process: each employee had the authority to choose their... View Details
- November 2020
- Article
Taxation in Matching Markets
By: Arnaud Dupuy, Alfred Galichon, Sonia Jaffe and Scott Duke Kominers
We analyze the effects of taxation in two-sided matching markets, i.e., markets in which all agents have heterogeneous preferences over potential partners. In matching markets, taxes can generate inefficiency on the allocative margin by changing who is matched to whom,... View Details
Dupuy, Arnaud, Alfred Galichon, Sonia Jaffe, and Scott Duke Kominers. "Taxation in Matching Markets." International Economic Review 61, no. 4 (November 2020): 1591–1634.