Filter Results:
(256)
Show Results For
- All HBS Web
(381)
- News (71)
- Research (256)
- Events (9)
- Multimedia (1)
- Faculty Publications (150)
Show Results For
- All HBS Web
(381)
- News (71)
- Research (256)
- Events (9)
- Multimedia (1)
- Faculty Publications (150)
Sort by
- 12 Apr 2022
- Research & Ideas
Swiping Right: How Data Helped This Online Dating Site Make More Matches
we had no real idea what would prevail. So, this is where the scientific mystery lies,” he says. Applying dating algorithms to other industries, cautiously Platonic platforms could follow similar, industry-appropriate revelation models.... View Details
Keywords: by Kara Baskin
- June 2023
- Simulation
Artea Dashboard and Targeting Policy Evaluation
By: Ayelet Israeli and Eva Ascarza
Companies deploy A/B experiments to gain valuable insights about their customers in order to answer strategic business problems. In marketing, A/B tests are often used to evaluate marketing interventions intended to generate incremental outcomes for the firm. The Artea... View Details
Keywords: Algorithm Bias; Algorithmic Data; Race And Ethnicity; Experimentation; Promotion; Marketing And Society; Big Data; Privacy; Data-driven Management; Data Analysis; Data Analytics; E-Commerce Strategy; Discrimination; Targeted Advertising; Targeted Policies; Pricing Algorithms; A/B Testing; Ethical Decision Making; Customer Base Analysis; Customer Heterogeneity; Coupons; Marketing; Race; Gender; Diversity; Customer Relationship Management; Marketing Communications; Advertising; Decision Making; Ethics; E-commerce; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; United States
- 2023
- Chapter
Marketing Through the Machine’s Eyes: Image Analytics and Interpretability
By: Shunyuan Zhang, Flora Feng and Kannan Srinivasan
he growth of social media and the sharing economy is generating abundant unstructured image and video data. Computer vision techniques can derive rich insights from unstructured data and can inform recommendations for increasing profits and consumer utility—if only the... View Details
Zhang, Shunyuan, Flora Feng, and Kannan Srinivasan. "Marketing Through the Machine’s Eyes: Image Analytics and Interpretability." Chap. 8 in Artificial Intelligence in Marketing. 20, edited by Naresh K. Malhotra, K. Sudhir, and Olivier Toubia, 217–238. Review of Marketing Research. Emerald Publishing Limited, 2023.
- 22 Feb 2024
- Research & Ideas
How to Make AI 'Forget' All the Private Data It Shouldn't Have
predictions about the world. And now, even though generative AI feels very different from making a simple prediction, at a technical level, that's really what it is. In order to train these predictive systems, you need lots of example View Details
- January 2021 (Revised March 2021)
- Case
THE YES: Reimagining the Future of E-Commerce with Artificial Intelligence (AI)
By: Jill Avery, Ayelet Israeli and Emma von Maur
THE YES, a multi-brand shopping app launched in May 2020 offered a new type of buying experience for women’s fashion, driven by a sophisticated algorithm that used data science and machine learning to create and deliver a personalized store for every shopper, based on... View Details
Keywords: Data; Data Analytics; Artificial Intelligence; AI; AI Algorithms; AI Creativity; Fashion; Retail; Retail Analytics; E-Commerce Strategy; Platform; Platforms; Big Data; Preference Elicitation; Preference Prediction; Predictive Analytics; App Development; "Marketing Analytics"; Advertising; Mobile App; Mobile Marketing; Apparel; Online Advertising; Referral Rewards; Referrals; Female Ceo; Female Entrepreneur; Female Protagonist; Analytics and Data Science; Analysis; Creativity; Marketing Strategy; Brands and Branding; Consumer Behavior; Demand and Consumers; Forecasting and Prediction; Marketing Channels; Digital Marketing; Internet and the Web; Mobile and Wireless Technology; AI and Machine Learning; E-commerce; Digital Platforms; Fashion Industry; Retail Industry; Apparel and Accessories Industry; Consumer Products Industry; United States
Avery, Jill, Ayelet Israeli, and Emma von Maur. "THE YES: Reimagining the Future of E-Commerce with Artificial Intelligence (AI)." Harvard Business School Case 521-070, January 2021. (Revised March 2021.)
- August 2022
- Supplement
Zalora: Data-Driven Pricing Recommendations
By: Ayelet Israeli
This exercise can be used in conjunction with the main case "Zalora: Data-Driven Pricing" to facilitate class discussion without requiring data analysis from the students. Instead, the exercise presents reports that were created by the data science team to answer the... View Details
Keywords: Pricing; Pricing Algorithms; Dynamic Pricing; Ecommerce; Pricing Strategy; Pricing And Revenue Management; Apparel; Singapore; Startup; Demand Estimation; Data Analysis; Data Analytics; Exercise; Price; Internet and the Web; Apparel and Accessories Industry; Retail Industry; Fashion Industry; Singapore
Israeli, Ayelet. "Zalora: Data-Driven Pricing Recommendations." Harvard Business School Supplement 523-032, August 2022.
- March 2019
- Case
Wattpad
By: John Deighton and Leora Kornfeld
How to run a platform to match four million writers of stories to 75 million readers? Use data science. Make money by doing deals with television and filmmakers and book publishers. The case describes the challenges of matching readers to stories and of helping writers... View Details
Keywords: Platform Businesses; Creative Industries; Publishing; Data Science; Machine Learning; Collaborative Filtering; Women And Leadership; Managing Data Scientists; Big Data; Recommender Systems; Digital Platforms; Information Technology; Intellectual Property; Analytics and Data Science; Publishing Industry; Entertainment and Recreation Industry; Canada; United States; Philippines; Viet Nam; Turkey; Indonesia; Brazil
Deighton, John, and Leora Kornfeld. "Wattpad." Harvard Business School Case 919-413, March 2019.
- May 2021 (Revised February 2024)
- Teaching Note
THE YES: Reimagining the Future of E-Commerce with Artificial Intelligence (AI)
By: Ayelet Israeli and Jill Avery
THE YES, a multi-brand shopping app launched in May 2020 offered a new type of buying experience for women’s fashion, driven by a sophisticated algorithm that used data science and machine learning to create and deliver a personalized store for every shopper, based on... View Details
Keywords: Data; Data Analytics; Artificial Intelligence; AI; AI Algorithms; AI Creativity; Fashion; Retail; Retail Analytics; E-Commerce Strategy; Platform; Platforms; Big Data; Preference Elicitation; Predictive Analytics; App Development; "Marketing Analytics"; Advertising; Mobile App; Mobile Marketing; Apparel; Online Advertising; Referral Rewards; Referrals; Female Ceo; Female Entrepreneur; Female Protagonist; Analytics and Data Science; Analysis; Creativity; Marketing Strategy; Brands and Branding; Consumer Behavior; Demand and Consumers; Forecasting and Prediction; Marketing Channels; Digital Marketing; Internet and the Web; Mobile and Wireless Technology; AI and Machine Learning; E-commerce; Digital Platforms; Fashion Industry; Retail Industry; Apparel and Accessories Industry; Consumer Products Industry; United States
- Article
Ensembles of Overfit and Overconfident Forecasts
By: Y. Grushka-Cockayne, V.R.R. Jose and K. C. Lichtendahl
Firms today average forecasts collected from multiple experts and models. Because of cognitive biases, strategic incentives, or the structure of machine-learning algorithms, these forecasts are often overfit to sample data and are overconfident. Little is known about... View Details
Grushka-Cockayne, Y., V.R.R. Jose, and K. C. Lichtendahl. "Ensembles of Overfit and Overconfident Forecasts." Management Science 63, no. 4 (April 2017): 1110–1130.
- Article
Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)
By: Eva Ascarza and Ayelet Israeli
An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those “protected”... View Details
Keywords: Algorithm Bias; Personalization; Targeting; Generalized Random Forests (GRF); Discrimination; Customization and Personalization; Decision Making; Fairness; Mathematical Methods
Ascarza, Eva, and Ayelet Israeli. "Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)." e2115126119. Proceedings of the National Academy of Sciences 119, no. 11 (March 8, 2022).
- February 2024
- Module Note
Data-Driven Marketing in Retail Markets
By: Ayelet Israeli
This note describes an eight-class sessions module on data-driven marketing in retail markets. The module aims to familiarize students with core concepts of data-driven marketing in retail, including exploring the opportunities and challenges, adopting best practices,... View Details
Keywords: Data; Data Analytics; Retail; Retail Analytics; Data Science; Business Analytics; "Marketing Analytics"; Omnichannel; Omnichannel Retailing; Omnichannel Retail; DTC; Direct To Consumer Marketing; Ethical Decision Making; Algorithmic Bias; Privacy; A/B Testing; Descriptive Analytics; Prescriptive Analytics; Predictive Analytics; Analytics and Data Science; E-commerce; Marketing Channels; Demand and Consumers; Marketing Strategy; Retail Industry
Israeli, Ayelet. "Data-Driven Marketing in Retail Markets." Harvard Business School Module Note 524-062, February 2024.
- Article
Fast Subset Scan for Multivariate Spatial Biosurveillance
By: Daniel B. Neill, Edward McFowland III and Huanian Zheng
We present new subset scan methods for multivariate event detection in massive space-time datasets. We extend the recently proposed 'fast subset scan' framework from univariate to multivariate data, enabling computationally efficient detection of irregular space-time... View Details
Neill, Daniel B., Edward McFowland III, and Huanian Zheng. "Fast Subset Scan for Multivariate Spatial Biosurveillance." Statistics in Medicine 32, no. 13 (June 15, 2013): 2185–2208.
- Research Summary
Overview
By: Ayelet Israeli
Professor Israeli utilizes econometric methods and field experiments to study data driven decision making in marketing context. Her research focuses on data-driven marketing, with an emphasis on how businesses can leverage their own data, customer data, and market data... View Details
- 2022
- Working Paper
Machine Learning Models for Prediction of Scope 3 Carbon Emissions
By: George Serafeim and Gladys Vélez Caicedo
For most organizations, the vast amount of carbon emissions occur in their supply chain and in the post-sale processing, usage, and end of life treatment of a product, collectively labelled scope 3 emissions. In this paper, we train machine learning algorithms on 15... View Details
Keywords: Carbon Emissions; Climate Change; Environment; Carbon Accounting; Machine Learning; Artificial Intelligence; Digital; Data Science; Environmental Sustainability; Environmental Management; Environmental Accounting
Serafeim, George, and Gladys Vélez Caicedo. "Machine Learning Models for Prediction of Scope 3 Carbon Emissions." Harvard Business School Working Paper, No. 22-080, June 2022.
- October 2023
- Article
Matching Mechanisms for Refugee Resettlement
By: David Delacrétaz, Scott Duke Kominers and Alexander Teytelboym
Current refugee resettlement processes account for neither the preferences of refugees nor the priorities of hosting communities. We introduce a new framework for matching with multidimensional knapsack constraints that captures the (possibly multidimensional) sizes of... View Details
Keywords: Refugee Resettlement; Matching; Matching Markets; Matching Platform; Matching With Contracts; Algorithms; Refugees; Market Design
Delacrétaz, David, Scott Duke Kominers, and Alexander Teytelboym. "Matching Mechanisms for Refugee Resettlement." American Economic Review 113, no. 10 (October 2023): 2689–2717.
- November 2024 (Revised January 2025)
- Case
MiDAS: Automating Unemployment Benefits
By: Shikhar Ghosh and Shweta Bagai
In 2015, the state of Michigan considered whether to nominate its Michigan Integrated Data Automated System (MiDAS) for a prestigious state technology award. Launched in 2013 amid severe budget pressures, the $47 million automated fraud detection system was designed to... View Details
Keywords: Artificial Intelligence; AI; Machine Learning Models; Algorithmic Data; Automation; Benefits; Compensation; Cost Reduction; Government; Fraud; Government Technology; Public Sector; Systems; Systems Integration; Unemployment Insurance; Waste Heat Recovery; AI and Machine Learning; Government Administration; Insurance; Decision Making; Digital Transformation; Employment; Public Administration Industry; United States; Michigan
Ghosh, Shikhar, and Shweta Bagai. "MiDAS: Automating Unemployment Benefits." Harvard Business School Case 825-100, November 2024. (Revised January 2025.)
- January 2021
- Article
Machine Learning for Pattern Discovery in Management Research
By: Prithwiraj Choudhury, Ryan Allen and Michael G. Endres
Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used for exploratory inductive or abductive research, or for post-hoc analysis of regression results to detect... View Details
Keywords: Machine Learning; Supervised Machine Learning; Induction; Abduction; Exploratory Data Analysis; Pattern Discovery; Decision Trees; Random Forests; Neural Networks; ROC Curve; Confusion Matrix; Partial Dependence Plots; AI and Machine Learning
Choudhury, Prithwiraj, Ryan Allen, and Michael G. Endres. "Machine Learning for Pattern Discovery in Management Research." Strategic Management Journal 42, no. 1 (January 2021): 30–57.
- 2023
- Working Paper
Efficient Discovery of Heterogeneous Quantile Treatment Effects in Randomized Experiments via Anomalous Pattern Detection
By: Edward McFowland III, Sriram Somanchi and Daniel B. Neill
In the recent literature on estimating heterogeneous treatment effects, each proposed method makes its own set of restrictive assumptions about the intervention’s effects and which subpopulations to explicitly estimate. Moreover, the majority of the literature provides... View Details
Keywords: Causal Inference; Program Evaluation; Algorithms; Distributional Average Treatment Effect; Treatment Effect Subset Scan; Heterogeneous Treatment Effects
McFowland III, Edward, Sriram Somanchi, and Daniel B. Neill. "Efficient Discovery of Heterogeneous Quantile Treatment Effects in Randomized Experiments via Anomalous Pattern Detection." Working Paper, 2023.
- October 2021 (Revised June 2022)
- Case
PittaRosso: Artificial Intelligence-Driven Pricing and Promotion
By: Ayelet Israeli
PittaRosso, a traditional Italian shoe retailer, is implementing an AI system to provide pricing and promotion recommendations. The system allows them to implement changes that would affect both the top of funnel and bottom of funnel activities for the company: once... View Details
Keywords: Artificial Intelligence; Pricing; Pricing Algorithm; Pricing Decisions; Pricing Strategy; Pricing Structure; Promotion; Promotions; Online Marketing; Data-driven Decision-making; Data-driven Management; Retail; Retail Analytics; AI; Price; Advertising Campaigns; Analytics and Data Science; Analysis; Digital Marketing; Budgets and Budgeting; Marketing Strategy; Marketing; Transformation; Decision Making; AI and Machine Learning; Retail Industry; Italy
Israeli, Ayelet. "PittaRosso: Artificial Intelligence-Driven Pricing and Promotion." Harvard Business School Case 522-046, October 2021. (Revised June 2022.)
- October 2021 (Revised March 2022)
- Supplement
PittaRosso: Artificial Intelligence-Driven Pricing and Promotion
By: Ayelet Israeli and Fabrizio Fantini
PittaRosso, a traditional Italian shoe retailer, is implementing an AI system to provide pricing and promotion recommendations. The system allows them to implement changes that would affect both the top of funnel and bottom of funnel activities for the company: once... View Details
Keywords: Artificial Intelligence; Pricing; Pricing Algorithm; Pricing Decisions; Pricing Strategy; Pricing Structure; Promotion; Promotions; Online Marketing; Data-driven Decision-making; Data-driven Management; Retail; Retail Analytics; Price; Advertising Campaigns; Analytics and Data Science; Analysis; Digital Marketing; Budgets and Budgeting; Marketing Strategy; Marketing; Transformation; Decision Making; Retail Industry; Italy