Filter Results:
(214)
Show Results For
- All HBS Web
(682)
- Faculty Publications (214)
Show Results For
- All HBS Web
(682)
- Faculty Publications (214)
- July–August 2023
- Article
Demand Learning and Pricing for Varying Assortments
By: Kris Ferreira and Emily Mower
Problem Definition: We consider the problem of demand learning and pricing for retailers who offer assortments of substitutable products that change frequently, e.g., due to limited inventory, perishable or time-sensitive products, or the retailer’s desire to... View Details
Keywords: Experiments; Pricing And Revenue Management; Retailing; Demand Estimation; Pricing Algorithm; Marketing; Price; Demand and Consumers; Mathematical Methods
Ferreira, Kris, and Emily Mower. "Demand Learning and Pricing for Varying Assortments." Manufacturing & Service Operations Management 25, no. 4 (July–August 2023): 1227–1244. (Finalist, Practice-Based Research Competition, MSOM (2021) and Finalist, Revenue Management & Pricing Section Practice Award, INFORMS (2019).)
- 2023
- Article
Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten
By: Himabindu Lakkaraju, Satyapriya Krishna and Jiaqi Ma
The Right to Explanation and the Right to be Forgotten are two important principles outlined to regulate algorithmic decision making and data usage in real-world applications. While the right to explanation allows individuals to request an actionable explanation for an... View Details
Keywords: Analytics and Data Science; AI and Machine Learning; Decision Making; Governing Rules, Regulations, and Reforms
Lakkaraju, Himabindu, Satyapriya Krishna, and Jiaqi Ma. "Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten." Proceedings of the International Conference on Machine Learning (ICML) 40th (2023): 17808–17826.
- July 2023
- Case
DayTwo: Going to Market with Gut Microbiome (Abridged)
By: Ayelet Israeli
DayTwo is a young Israeli startup that applies research on the gut microbiome and machine learning algorithms to deliver personalized nutritional recommendations to its users in order to minimize blood sugar spikes after meals. After a first year of trial rollout in... View Details
Keywords: Business Startups; AI and Machine Learning; Nutrition; Market Entry and Exit; Product Marketing; Distribution Channels
Israeli, Ayelet. "DayTwo: Going to Market with Gut Microbiome (Abridged)." Harvard Business School Case 524-015, July 2023.
- 2023
- Working Paper
Algorithm Failures and Consumers' Response: Evidence from Zillow
By: Isamar Troncoso, Runshan Fu, Nikhil Malik and Davide Proserpio
In November 2021, Zillow announced the closure of its iBuyer business. Popular media largely attributed this to a failure of its proprietary forecasting algorithm. We study the response of consumers to Zillow’s iBuyer business closure. We show that after the iBuyer... View Details
Keywords: Algorithmic Pricing; Price; Forecasting and Prediction; Consumer Behavior; Real Estate Industry
Troncoso, Isamar, Runshan Fu, Nikhil Malik, and Davide Proserpio. "Algorithm Failures and Consumers' Response: Evidence from Zillow." Working Paper, July 2023.
- June 2023
- Simulation
Artea Dashboard and Targeting Policy Evaluation
By: Ayelet Israeli and Eva Ascarza
Companies deploy A/B experiments to gain valuable insights about their customers in order to answer strategic business problems. In marketing, A/B tests are often used to evaluate marketing interventions intended to generate incremental outcomes for the firm. The Artea... View Details
Keywords: Algorithm Bias; Algorithmic Data; Race And Ethnicity; Experimentation; Promotion; Marketing And Society; Big Data; Privacy; Data-driven Management; Data Analysis; Data Analytics; E-Commerce Strategy; Discrimination; Targeted Advertising; Targeted Policies; Pricing Algorithms; A/B Testing; Ethical Decision Making; Customer Base Analysis; Customer Heterogeneity; Coupons; Marketing; Race; Gender; Diversity; Customer Relationship Management; Marketing Communications; Advertising; Decision Making; Ethics; E-commerce; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; United States
- 2023
- Working Paper
Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness
By: Neil Menghani, Edward McFowland III and Daniel B. Neill
In this paper, we develop a new criterion, "insufficiently justified disparate impact" (IJDI), for assessing whether recommendations (binarized predictions) made by an algorithmic decision support tool are fair. Our novel, utility-based IJDI criterion evaluates false... View Details
Menghani, Neil, Edward McFowland III, and Daniel B. Neill. "Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness." Working Paper, June 2023.
- June 2023
- Exercise
Experimenting with Algorithm Resume Screening
By: Michael Luca, Jesse M. Shapiro, Adrian Obleton, Evelyn Ramirez and Nathan Sun
- May–June 2023
- Article
Analytics for Marketers: When to Rely on Algorithms and When to Trust Your Gut
By: Fabrizio Fantini and Das Narayandas
Advanced analytics can help companies solve a host of management problems, including those related to marketing, sales, and supply-chain operations, which can lead to a sustainable competitive advantage. But as more data becomes available and advanced analytics are... View Details
Fantini, Fabrizio, and Das Narayandas. "Analytics for Marketers: When to Rely on Algorithms and When to Trust Your Gut." Harvard Business Review 101, no. 3 (May–June 2023): 82–91.
- 2023
- Working Paper
Digital Lending and Financial Well-Being: Through the Lens of Mobile Phone Data
By: AJ Chen, Omri Even-Tov, Jung Koo Kang and Regina Wittenberg-Moerman
To mitigate information asymmetry about borrowers in developing economies, digital lenders utilize machine-learning algorithms and nontraditional data from borrowers’ mobile devices. Consequently, digital lenders have managed to expand access to credit for millions of... View Details
Keywords: Borrowing and Debt; Credit; AI and Machine Learning; Welfare; Well-being; Developing Countries and Economies; Equality and Inequality
Chen, AJ, Omri Even-Tov, Jung Koo Kang, and Regina Wittenberg-Moerman. "Digital Lending and Financial Well-Being: Through the Lens of Mobile Phone Data." Harvard Business School Working Paper, No. 23-076, April 2023. (Revised November 2023. SSRN Working Paper Series, November 2023)
- May 2023
- Technical Note
Dynamic Pricing: Timing is Everything
By: Elie Ofek
This note provides a comprehensive exposition to the topic of dynamic pricing (whereby the fee customers are charged is time-dependent). It covers the motivation for firms to engage in dynamic pricing, provides a typology of the main formats dynamic pricing can take,... View Details
Ofek, Elie. "Dynamic Pricing: Timing is Everything." Harvard Business School Technical Note 523-110, May 2023.
- 2023
- Article
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
By: Martin Pawelczyk, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci and Himabindu Lakkaraju
As machine learning models are increasingly being employed to make consequential decisions in real-world settings, it becomes critical to ensure that individuals who are adversely impacted (e.g., loan denied) by the predictions of these models are provided with a means... View Details
Pawelczyk, Martin, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci, and Himabindu Lakkaraju. "Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse." Proceedings of the International Conference on Learning Representations (ICLR) (2023).
- April 2023
- Article
On the Privacy Risks of Algorithmic Recourse
By: Martin Pawelczyk, Himabindu Lakkaraju and Seth Neel
As predictive models are increasingly being employed to make consequential decisions, there is a growing emphasis on developing techniques that can provide algorithmic recourse to affected individuals. While such recourses can be immensely beneficial to affected... View Details
Pawelczyk, Martin, Himabindu Lakkaraju, and Seth Neel. "On the Privacy Risks of Algorithmic Recourse." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 206 (April 2023).
- 2023
- Working Paper
PRIMO: Private Regression in Multiple Outcomes
By: Seth Neel
We introduce a new differentially private regression setting we call Private Regression in Multiple Outcomes (PRIMO), inspired the common situation where a data analyst wants to perform a set of l regressions while preserving privacy, where the covariates... View Details
Neel, Seth. "PRIMO: Private Regression in Multiple Outcomes." Working Paper, March 2023.
- 2023
- Working Paper
The Limits of Algorithmic Measures of Race in Studies of Outcome Disparities
By: David S. Scharfstein and Sergey Chernenko
We show that the use of algorithms to predict race has significant limitations in measuring and understanding the sources of racial disparities in finance, economics, and other contexts. First, we derive theoretically the direction and magnitude of measurement bias in... View Details
Keywords: Racial Disparity; Paycheck Protection Program; Measurement Error; AI and Machine Learning; Race; Measurement and Metrics; Equality and Inequality; Prejudice and Bias; Forecasting and Prediction; Outcome or Result
Scharfstein, David S., and Sergey Chernenko. "The Limits of Algorithmic Measures of Race in Studies of Outcome Disparities." Working Paper, April 2023.
- March 2023
- Teaching Note
VideaHealth: Building the AI Factory
By: Karim R. Lakhani
Teaching Note for HBS Case No. 621-021. The case “VideaHealth: Building the AI Factory” examines the creation of dental startup VideaHealth (Videa) and the development of its artificial intelligence (AI)-led business strategy through the eyes of founder and CEO Florian... View Details
- 2023
- Chapter
Marketing Through the Machine’s Eyes: Image Analytics and Interpretability
By: Shunyuan Zhang, Flora Feng and Kannan Srinivasan
he growth of social media and the sharing economy is generating abundant unstructured image and video data. Computer vision techniques can derive rich insights from unstructured data and can inform recommendations for increasing profits and consumer utility—if only the... View Details
Zhang, Shunyuan, Flora Feng, and Kannan Srinivasan. "Marketing Through the Machine’s Eyes: Image Analytics and Interpretability." Chap. 8 in Artificial Intelligence in Marketing. 20, edited by Naresh K. Malhotra, K. Sudhir, and Olivier Toubia, 217–238. Review of Marketing Research. Emerald Publishing Limited, 2023.
- March–April 2023
- Article
Market Segmentation Trees
By: Ali Aouad, Adam Elmachtoub, Kris J. Ferreira and Ryan McNellis
Problem definition: We seek to provide an interpretable framework for segmenting users in a population for personalized decision making. Methodology/results: We propose a general methodology, market segmentation trees (MSTs), for learning market... View Details
Keywords: Decision Trees; Computational Advertising; Market Segmentation; Analytics and Data Science; E-commerce; Consumer Behavior; Marketplace Matching; Marketing Channels; Digital Marketing
Aouad, Ali, Adam Elmachtoub, Kris J. Ferreira, and Ryan McNellis. "Market Segmentation Trees." Manufacturing & Service Operations Management 25, no. 2 (March–April 2023): 648–667.
- February 2023 (Revised March 2024)
- Supplement
Shanty Real Estate: Teaching Note Supplement
By: Michael Luca and Jesse M. Shapiro
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
- Working Paper
Group Fairness in Dynamic Refugee Assignment
By: Daniel Freund, Thodoris Lykouris, Elisabeth Paulson, Bradley Sturt and Wentao Weng
Ensuring that refugees and asylum seekers thrive (e.g., find employment) in their host countries is a profound humanitarian goal, and a primary driver of employment is the geographic
location within a host country to which the refugee or asylum seeker is... View Details
Freund, Daniel, Thodoris Lykouris, Elisabeth Paulson, Bradley Sturt, and Wentao Weng. "Group Fairness in Dynamic Refugee Assignment." Harvard Business School Working Paper, No. 23-047, February 2023.
- January 2023
- Case
Proday: Calling the Right Play
By: Lindsay N. Hyde, Thomas R. Eisenmann and Tom Quinn
Sarah Kunst knew the elements of a successful startup from her tenure at venture capital firms. In April 2018, however, her own app – Proday, a home fitness platform featuring exercises filmed by professional sports stars – was floundering. Kunst theorized that... View Details
Keywords: Social Media; Entrepreneurship; Advertising; Digital Marketing; Product Launch; Social Marketing; Failure; Sports; Applications and Software; Business Startups; Technology Industry; United States
Hyde, Lindsay N., Thomas R. Eisenmann, and Tom Quinn. "Proday: Calling the Right Play." Harvard Business School Case 823-005, January 2023.