Filter Results:
(97)
Show Results For
- All HBS Web
(97)
- News (18)
- Research (66)
- Events (1)
- Multimedia (1)
- Faculty Publications (38)
Show Results For
- All HBS Web
(97)
- News (18)
- Research (66)
- Events (1)
- Multimedia (1)
- Faculty Publications (38)
- 19 Nov 2019
- Op-Ed
Gender Bias Complaints against Apple Card Signal a Dark Side to Fintech
bias in Goldman Sachs’s underwriting model. (Goldman developed and issued the card.) Adding fuel to the fire, Apple co-founder Steve Wozniak shared that the same thing had happened to him and his wife. Officials from the New York... View Details
- 16 Dec 2022
- Research & Ideas
Why Technology Alone Can't Solve AI's Bias Problem
human toll to letting algorithms do the work. “Maybe there is a bias from people who have been traditionally hiring men.” Searches on popular recruiting sites might seem like a neutral way to find... View Details
- 30 May 2024
- Research & Ideas
Racial Bias Might Be Infecting Patient Portals. Can AI Help?
messages. That’s part of the reason the authors say there may be other factors besides direct racial bias driving the results—and a key reason that they are keen to explore this data in future research. One potential factor they... View Details
- 12 Oct 2022
- Research & Ideas
When Design Enables Discrimination: Learning from Anti-Asian Bias on Airbnb
they may inadvertently exacerbate. While Airbnb has addressed bias concerns with site changes in the past, further steps could be taken to bring more anonymity to the site, Luca says. Platform design and discrimination Renting out... View Details
- September 2020 (Revised June 2023)
- Exercise
Artea: Designing Targeting Strategies
By: Eva Ascarza and Ayelet Israeli
This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and targeting. Parts (B),(C),(D) Introduce algorithmic bias. The... View Details
Keywords: Algorithmic Data; Race And Ethnicity; Experimentation; Promotion; "Marketing Analytics"; Marketing And Society; Big Data; Privacy; Data-driven Management; Data Analytics; Data Analysis; E-Commerce Strategy; Discrimination; Targeted Advertising; Targeted Policies; Targeting; Pricing Algorithms; A/B Testing; Ethical Decision Making; Customer Base Analysis; Customer Heterogeneity; Coupons; Algorithmic Bias; Marketing; Race; Gender; Diversity; Customer Relationship Management; Marketing Communications; Advertising; Decision Making; Ethics; E-commerce; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; United States
Ascarza, Eva, and Ayelet Israeli. "Artea: Designing Targeting Strategies." Harvard Business School Exercise 521-021, September 2020. (Revised June 2023.)
- 2021
- Working Paper
Invisible Primes: Fintech Lending with Alternative Data
By: Marco Di Maggio, Dimuthu Ratnadiwakara and Don Carmichael
We exploit anonymized administrative data provided by a major fintech platform to investigate whether using alternative data to assess borrowers’ creditworthiness results in broader credit access. Comparing actual outcomes of the fintech platform’s model to... View Details
Keywords: Fintech Lending; Alternative Data; Machine Learning; Algorithm Bias; Finance; Information Technology; Financing and Loans; Analytics and Data Science; Credit
Di Maggio, Marco, Dimuthu Ratnadiwakara, and Don Carmichael. "Invisible Primes: Fintech Lending with Alternative Data." Harvard Business School Working Paper, No. 22-024, October 2021.
- June 2023
- Simulation
Artea Dashboard and Targeting Policy Evaluation
By: Ayelet Israeli and Eva Ascarza
Companies deploy A/B experiments to gain valuable insights about their customers in order to answer strategic business problems. In marketing, A/B tests are often used to evaluate marketing interventions intended to generate incremental outcomes for the firm. The Artea... View Details
Keywords: Algorithm Bias; Algorithmic Data; Race And Ethnicity; Experimentation; Promotion; Marketing And Society; Big Data; Privacy; Data-driven Management; Data Analysis; Data Analytics; E-Commerce Strategy; Discrimination; Targeted Advertising; Targeted Policies; Pricing Algorithms; A/B Testing; Ethical Decision Making; Customer Base Analysis; Customer Heterogeneity; Coupons; Marketing; Race; Gender; Diversity; Customer Relationship Management; Marketing Communications; Advertising; Decision Making; Ethics; E-commerce; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; United States
- Teaching Interest
Overview
Paul is primarily interested in teaching data science to management students through the case method. This includes technical topics (programming and statistics) as well as higher-level management issues (digital transformation, data governance, etc.) As a research... View Details
Keywords: A/B Testing; AI; AI Algorithms; AI Creativity; Algorithm; Algorithm Bias; Algorithmic Bias; Algorithmic Fairness; Algorithms; Analytics; Application Program Interface; Artificial Intelligence; Causality; Causal Inference; Computing; Computers; Data Analysis; Data Analytics; Data Architecture; Data As A Service; Data Centers; Data Governance; Data Labeling; Data Management; Data Manipulation; Data Mining; Data Ownership; Data Privacy; Data Protection; Data Science; Data Science And Analytics Management; Data Scientists; Data Security; Data Sharing; Data Strategy; Data Visualization; Database; Data-driven Decision-making; Data-driven Management; Data-driven Operations; Datathon; Economics Of AI; Economics Of Innovation; Economics Of Information System; Economics Of Science; Forecast; Forecast Accuracy; Forecasting; Forecasting And Prediction; Information Technology; Machine Learning; Machine Learning Models; Prediction; Prediction Error; Predictive Analytics; Predictive Models; Analysis; AI and Machine Learning; Analytics and Data Science; Applications and Software; Digital Transformation; Information Management; Digital Strategy; Technology Adoption
- September 2020 (Revised February 2024)
- Teaching Note
Artea (A), (B), (C), and (D): Designing Targeting Strategies
By: Eva Ascarza and Ayelet Israeli
Teaching Note for HBS No. 521-021,521-022,521-037,521-043. This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and... View Details
- February 2024
- Module Note
Data-Driven Marketing in Retail Markets
By: Ayelet Israeli
This note describes an eight-class sessions module on data-driven marketing in retail markets. The module aims to familiarize students with core concepts of data-driven marketing in retail, including exploring the opportunities and challenges, adopting best practices,... View Details
Keywords: Data; Data Analytics; Retail; Retail Analytics; Data Science; Business Analytics; "Marketing Analytics"; Omnichannel; Omnichannel Retailing; Omnichannel Retail; DTC; Direct To Consumer Marketing; Ethical Decision Making; Algorithmic Bias; Privacy; A/B Testing; Descriptive Analytics; Prescriptive Analytics; Predictive Analytics; Analytics and Data Science; E-commerce; Marketing Channels; Demand and Consumers; Marketing Strategy; Retail Industry
Israeli, Ayelet. "Data-Driven Marketing in Retail Markets." Harvard Business School Module Note 524-062, February 2024.
- 26 Apr 2023
- In Practice
Is AI Coming for Your Job?
generate content that perpetuates existing biases. When we train these models at scale based on existing data, if the underlying data included biased information, the result is also likely to include that bias unless we intervene. One... View Details
- March 2019
- Case
Wattpad
By: John Deighton and Leora Kornfeld
How to run a platform to match four million writers of stories to 75 million readers? Use data science. Make money by doing deals with television and filmmakers and book publishers. The case describes the challenges of matching readers to stories and of helping writers... View Details
Keywords: Platform Businesses; Creative Industries; Publishing; Data Science; Machine Learning; Collaborative Filtering; Women And Leadership; Managing Data Scientists; Big Data; Recommender Systems; Digital Platforms; Information Technology; Intellectual Property; Analytics and Data Science; Publishing Industry; Entertainment and Recreation Industry; Canada; United States; Philippines; Viet Nam; Turkey; Indonesia; Brazil
Deighton, John, and Leora Kornfeld. "Wattpad." Harvard Business School Case 919-413, March 2019.
- Forthcoming
- Article
Human-Algorithm Collaboration with Private Information: Naïve Advice Weighting Behavior and Mitigation
By: Maya Balakrishnan, Kris Ferreira and Jordan Tong
Even if algorithms make better predictions than humans on average, humans may sometimes have private information which an algorithm does not have access to that can improve performance. How can we help humans effectively use and adjust recommendations made by... View Details
Keywords: AI and Machine Learning; Analytics and Data Science; Forecasting and Prediction; Digital Marketing
Balakrishnan, Maya, Kris Ferreira, and Jordan Tong. "Human-Algorithm Collaboration with Private Information: Naïve Advice Weighting Behavior and Mitigation." Management Science (forthcoming).
- 08 May 2023
- Research & Ideas
How Trump’s Anti-Immigrant Rhetoric Crushed Crowdfunding for Minority Entrepreneurs
builds upon previous research on “systemic racial bias in entrepreneurial finance,” illustrating a “more direct” connection between shifts in public attitudes and struggles experienced by minority creators in raising money for new... View Details
Keywords: by Scott Van Voorhis
- Blog
Is AI Coming for Your Job?
generate content that perpetuates existing biases. When we train these models at scale based on existing data, if the underlying data included biased information, the result is also likely to include that bias unless we intervene. One... View Details
- 20 Apr 2020
- News
Digital Transformation: Business Leaders Still Struggling to Cope
- 2024
- Working Paper
Warnings and Endorsements: Improving Human-AI Collaboration Under Covariate Shift
By: Matthew DosSantos DiSorbo and Kris Ferreira
Problem definition: While artificial intelligence (AI) algorithms may perform well on data that are representative of the training set (inliers), they may err when extrapolating on non-representative data (outliers). These outliers often originate from covariate shift,... View Details
DosSantos DiSorbo, Matthew, and Kris Ferreira. "Warnings and Endorsements: Improving Human-AI Collaboration Under Covariate Shift." Working Paper, February 2024.
- 08 May 2018
- First Look
First Look at New Research and Ideas, May 8, 2018
unexpected networking opportunities, generating a tight community of German businesspeople in India. Publisher's link: https://www.hbs.edu/faculty/Pages/item.aspx?num=54465 How Scheduling Can Bias Quality Assessment: Evidence from Food... View Details
Keywords: Sean Silverthorne
- September 2020 (Revised July 2022)
- Supplement
Spreadsheet Supplement to Artea (B) and (C)
By: Eva Ascarza and Ayelet Israeli
Spreadsheet Supplement to "Artea (B): Including Customer-level Demographic Data" and "Artea (C): Potential Discrimination through Algorithmic Targeting" View Details