Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (28) Arrow Down
Filter Results: (28) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (104)
    • Faculty Publications  (28)

    Show Results For

    • All HBS Web  (104)
      • Faculty Publications  (28)

      Algorithmic BiasRemove Algorithmic Bias →

      Page 1 of 28 Results →

      Are you looking for?

      →Search All HBS Web
      • December 2024
      • Article

      Public Attitudes on Performance for Algorithmic and Human Decision-Makers

      By: Kirk Bansak and Elisabeth Paulson
      This study explores public preferences for algorithmic and human decision-makers (DMs) in high-stakes contexts, how these preferences are shaped by performance metrics, and whether public evaluations of performance differ depending on the type of DM. Leveraging a... View Details
      Keywords: Public Opinion; Prejudice and Bias; Decision Making
      Citation
      Read Now
      Related
      Bansak, Kirk, and Elisabeth Paulson. "Public Attitudes on Performance for Algorithmic and Human Decision-Makers." PNAS Nexus 3, no. 12 (December 2024).
      • March 2024
      • Case

      Unintended Consequences of Algorithmic Personalization

      By: Eva Ascarza and Ayelet Israeli
      “Unintended Consequences of Algorithmic Personalization” (HBS No. 524-052) investigates algorithmic bias in marketing through four case studies featuring Apple, Uber, Facebook, and Amazon. Each study presents scenarios where these companies faced public criticism for... View Details
      Keywords: Race; Gender; Marketing; Diversity; Customer Relationship Management; Prejudice and Bias; Customization and Personalization; Technology Industry; Retail Industry; United States
      Citation
      Educators
      Purchase
      Related
      Ascarza, Eva, and Ayelet Israeli. "Unintended Consequences of Algorithmic Personalization." Harvard Business School Case 524-052, March 2024.
      • February 2024
      • Module Note

      Data-Driven Marketing in Retail Markets

      By: Ayelet Israeli
      This note describes an eight-class sessions module on data-driven marketing in retail markets. The module aims to familiarize students with core concepts of data-driven marketing in retail, including exploring the opportunities and challenges, adopting best practices,... View Details
      Keywords: Data; Data Analytics; Retail; Retail Analytics; Data Science; Business Analytics; "Marketing Analytics"; Omnichannel; Omnichannel Retailing; Omnichannel Retail; DTC; Direct To Consumer Marketing; Ethical Decision Making; Algorithmic Bias; Privacy; A/B Testing; Descriptive Analytics; Prescriptive Analytics; Predictive Analytics; Analytics and Data Science; E-commerce; Marketing Channels; Demand and Consumers; Marketing Strategy; Retail Industry
      Citation
      Purchase
      Related
      Israeli, Ayelet. "Data-Driven Marketing in Retail Markets." Harvard Business School Module Note 524-062, February 2024.
      • 2024
      • Working Paper

      Warnings and Endorsements: Improving Human-AI Collaboration Under Covariate Shift

      By: Matthew DosSantos DiSorbo and Kris Ferreira
      Problem definition: While artificial intelligence (AI) algorithms may perform well on data that are representative of the training set (inliers), they may err when extrapolating on non-representative data (outliers). These outliers often originate from covariate shift,... View Details
      Keywords: AI and Machine Learning; Decision Choices and Conditions
      Citation
      Read Now
      Related
      DosSantos DiSorbo, Matthew, and Kris Ferreira. "Warnings and Endorsements: Improving Human-AI Collaboration Under Covariate Shift." Working Paper, February 2024.
      • 2025
      • Working Paper

      Enhancing Treatment Effect Prediction on Privacy-Protected Data: An Honest Post-Processing Approach

      By: Ta-Wei Huang and Eva Ascarza
      As firms increasingly rely on customer data for personalization, concerns over privacy and regulatory compliance have grown. Local Differential Privacy (LDP) offers strong individual-level protection by injecting noise into data before collection. While... View Details
      Keywords: Targeted Intervention; Conditional Average Treatment Effect Estimation; Differential Privacy; Honest Estimation; Post-processing; Analytics and Data Science; Consumer Behavior; Marketing
      Citation
      SSRN
      Read Now
      Related
      Huang, Ta-Wei, and Eva Ascarza. "Enhancing Treatment Effect Prediction on Privacy-Protected Data: An Honest Post-Processing Approach." Harvard Business School Working Paper, No. 24-034, December 2023. (Revised March 2025.)
      • September 29, 2023
      • Article

      Eliminating Algorithmic Bias Is Just the Beginning of Equitable AI

      By: Simon Friis and James Riley
      When it comes to artificial intelligence and inequality, algorithmic bias rightly receives a lot of attention. But it’s just one way that AI can lead to inequitable outcomes. To truly create equitable AI, we need to consider three forces through which it might make... View Details
      Keywords: AI and Machine Learning; Prejudice and Bias; Equality and Inequality
      Citation
      Find at Harvard
      Register to Read
      Related
      Friis, Simon, and James Riley. "Eliminating Algorithmic Bias Is Just the Beginning of Equitable AI." Harvard Business Review (website) (September 29, 2023).
      • June 2023
      • Simulation

      Artea Dashboard and Targeting Policy Evaluation

      By: Ayelet Israeli and Eva Ascarza
      Companies deploy A/B experiments to gain valuable insights about their customers in order to answer strategic business problems. In marketing, A/B tests are often used to evaluate marketing interventions intended to generate incremental outcomes for the firm. The Artea... View Details
      Keywords: Algorithm Bias; Algorithmic Data; Race And Ethnicity; Experimentation; Promotion; Marketing And Society; Big Data; Privacy; Data-driven Management; Data Analysis; Data Analytics; E-Commerce Strategy; Discrimination; Targeted Advertising; Targeted Policies; Pricing Algorithms; A/B Testing; Ethical Decision Making; Customer Base Analysis; Customer Heterogeneity; Coupons; Marketing; Race; Gender; Diversity; Customer Relationship Management; Marketing Communications; Advertising; Decision Making; Ethics; E-commerce; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; United States
      Citation
      Purchase
      Related
      Israeli, Ayelet, and Eva Ascarza. "Artea Dashboard and Targeting Policy Evaluation." Harvard Business School Simulation 523-707, June 2023.
      • 2023
      • Working Paper

      Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness

      By: Neil Menghani, Edward McFowland III and Daniel B. Neill
      In this paper, we develop a new criterion, "insufficiently justified disparate impact" (IJDI), for assessing whether recommendations (binarized predictions) made by an algorithmic decision support tool are fair. Our novel, utility-based IJDI criterion evaluates false... View Details
      Keywords: AI and Machine Learning; Forecasting and Prediction; Prejudice and Bias
      Citation
      Read Now
      Related
      Menghani, Neil, Edward McFowland III, and Daniel B. Neill. "Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness." Working Paper, June 2023.
      • 2023
      • Working Paper

      The Limits of Algorithmic Measures of Race in Studies of Outcome Disparities

      By: David S. Scharfstein and Sergey Chernenko
      We show that the use of algorithms to predict race has significant limitations in measuring and understanding the sources of racial disparities in finance, economics, and other contexts. First, we derive theoretically the direction and magnitude of measurement bias in... View Details
      Keywords: Racial Disparity; Paycheck Protection Program; Measurement Error; AI and Machine Learning; Race; Measurement and Metrics; Equality and Inequality; Prejudice and Bias; Forecasting and Prediction; Outcome or Result
      Citation
      SSRN
      Read Now
      Related
      Scharfstein, David S., and Sergey Chernenko. "The Limits of Algorithmic Measures of Race in Studies of Outcome Disparities." Working Paper, April 2023.
      • 2023
      • Chapter

      Marketing Through the Machine’s Eyes: Image Analytics and Interpretability

      By: Shunyuan Zhang, Flora Feng and Kannan Srinivasan
      he growth of social media and the sharing economy is generating abundant unstructured image and video data. Computer vision techniques can derive rich insights from unstructured data and can inform recommendations for increasing profits and consumer utility—if only the... View Details
      Keywords: Transparency; Marketing Research; Algorithmic Bias; AI and Machine Learning; Marketing
      Citation
      Related
      Zhang, Shunyuan, Flora Feng, and Kannan Srinivasan. "Marketing Through the Machine’s Eyes: Image Analytics and Interpretability." Chap. 8 in Artificial Intelligence in Marketing. 20, edited by Naresh K. Malhotra, K. Sudhir, and Olivier Toubia, 217–238. Review of Marketing Research. Emerald Publishing Limited, 2023.
      • October–December 2022
      • Article

      Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem

      By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
      Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed... View Details
      Keywords: Machine Learning; Econometric Analysis; Instrumental Variable; Random Forest; Causal Inference; AI and Machine Learning; Forecasting and Prediction
      Citation
      Find at Harvard
      Register to Read
      Related
      Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." INFORMS Journal on Data Science 1, no. 2 (October–December 2022): 138–155.
      • May 2022 (Revised June 2024)
      • Case

      LOOP: Driving Change in Auto Insurance Pricing

      By: Elie Ofek and Alicia Dadlani
      John Henry and Carey Anne Nadeau, co-founders and co-CEOs of LOOP, an insurtech startup based in Austin, Texas, were on a mission to modernize the archaic $250 billion automobile insurance market. They sought to create equitably priced insurance by eliminating pricing... View Details
      Keywords: AI and Machine Learning; Technological Innovation; Equality and Inequality; Prejudice and Bias; Growth and Development Strategy; Customer Relationship Management; Price; Insurance Industry; Financial Services Industry
      Citation
      Educators
      Purchase
      Related
      Ofek, Elie, and Alicia Dadlani. "LOOP: Driving Change in Auto Insurance Pricing." Harvard Business School Case 522-073, May 2022. (Revised June 2024.)
      • Article

      Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)

      By: Eva Ascarza and Ayelet Israeli

      An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those “protected”... View Details

      Keywords: Algorithm Bias; Personalization; Targeting; Generalized Random Forests (GRF); Discrimination; Customization and Personalization; Decision Making; Fairness; Mathematical Methods
      Citation
      Read Now
      Related
      Ascarza, Eva, and Ayelet Israeli. "Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)." e2115126119. Proceedings of the National Academy of Sciences 119, no. 11 (March 8, 2022).
      • September–October 2021
      • Article

      Frontiers: Can an AI Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb

      By: Shunyuan Zhang, Nitin Mehta, Param Singh and Kannan Srinivasan
      We study the effect of Airbnb’s smart-pricing algorithm on the racial disparity in the daily revenue earned by Airbnb hosts. Our empirical strategy exploits Airbnb’s introduction of the algorithm and its voluntary adoption by hosts as a quasi-natural experiment. Among... View Details
      Keywords: Smart Pricing; Pricing Algorithm; Machine Bias; Discrimination; Racial Disparity; Social Inequality; Airbnb Revenue; Revenue; Race; Equality and Inequality; Prejudice and Bias; Price; Mathematical Methods; Accommodations Industry
      Citation
      SSRN
      Find at Harvard
      Related
      Zhang, Shunyuan, Nitin Mehta, Param Singh, and Kannan Srinivasan. "Frontiers: Can an AI Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb." Marketing Science 40, no. 5 (September–October 2021): 813–820.
      • September 17, 2021
      • Article

      AI Can Help Address Inequity—If Companies Earn Users' Trust

      By: Shunyuan Zhang, Kannan Srinivasan, Param Singh and Nitin Mehta
      While companies may spend a lot of time testing models before launch, many spend too little time considering how they will work in the wild. In particular, they fail to fully consider how rates of adoption can warp developers’ intent. For instance, Airbnb launched a... View Details
      Keywords: Artificial Intelligence; Algorithmic Bias; Technological Innovation; Perception; Diversity; Equality and Inequality; Trust; AI and Machine Learning
      Citation
      Find at Harvard
      Register to Read
      Related
      Zhang, Shunyuan, Kannan Srinivasan, Param Singh, and Nitin Mehta. "AI Can Help Address Inequity—If Companies Earn Users' Trust." Harvard Business Review Digital Articles (September 17, 2021).
      • March 2021
      • Supplement

      Artea (A), (B), (C), and (D): Designing Targeting Strategies

      By: Eva Ascarza and Ayelet Israeli
      Power Point Supplement to Teaching Note for HBS No. 521-021,521-022,521-037,521-043. This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on... View Details
      Keywords: Targeted Advertising; Targeting; Algorithmic Data; Bias; A/B Testing; Experiment; Advertising; Gender; Race; Diversity; Marketing; Customer Relationship Management; Prejudice and Bias; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; Technology Industry; United States
      Citation
      Purchase
      Related
      Ascarza, Eva, and Ayelet Israeli. "Artea (A), (B), (C), and (D): Designing Targeting Strategies." Harvard Business School PowerPoint Supplement 521-719, March 2021.
      • September 2020 (Revised July 2022)
      • Teaching Note

      Algorithmic Bias in Marketing

      By: Ayelet Israeli and Eva Ascarza
      Teaching Note for HBS No. 521-020. This note focuses on algorithmic bias in marketing. First, it presents a variety of marketing examples in which algorithmic bias may occur. The examples are organized around the 4 P’s of marketing – promotion, price, place and... View Details
      Keywords: Marketing; Race; Ethnicity; Gender; Diversity; Prejudice and Bias; Decision Making; Ethics; Customer Relationship Management; Retail Industry; Technology Industry; Apparel and Accessories Industry; United States
      Citation
      Purchase
      Related
      Israeli, Ayelet, and Eva Ascarza. "Algorithmic Bias in Marketing." Harvard Business School Teaching Note 521-035, September 2020. (Revised July 2022.)
      • September 2020 (Revised July 2022)
      • Technical Note

      Algorithmic Bias in Marketing

      By: Ayelet Israeli and Eva Ascarza
      This note focuses on algorithmic bias in marketing. First, it presents a variety of marketing examples in which algorithmic bias may occur. The examples are organized around the 4 P’s of marketing – promotion, price, place and product—characterizing the marketing... View Details
      Keywords: Algorithmic Data; Race And Ethnicity; Promotion; "Marketing Analytics"; Marketing And Society; Big Data; Privacy; Data-driven Management; Data Analysis; Data Analytics; E-Commerce Strategy; Discrimination; Targeting; Targeted Advertising; Pricing Algorithms; Ethical Decision Making; Customer Heterogeneity; Marketing; Race; Ethnicity; Gender; Diversity; Prejudice and Bias; Marketing Communications; Analytics and Data Science; Analysis; Decision Making; Ethics; Customer Relationship Management; E-commerce; Retail Industry; Apparel and Accessories Industry; United States
      Citation
      Educators
      Purchase
      Related
      Israeli, Ayelet, and Eva Ascarza. "Algorithmic Bias in Marketing." Harvard Business School Technical Note 521-020, September 2020. (Revised July 2022.)
      • September 2020 (Revised February 2024)
      • Teaching Note

      Artea (A), (B), (C), and (D): Designing Targeting Strategies

      By: Eva Ascarza and Ayelet Israeli
      Teaching Note for HBS No. 521-021,521-022,521-037,521-043. This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and... View Details
      Keywords: Targeted Advertising; Targeting; Race; Gender; Diversity; Marketing; Customer Relationship Management; Prejudice and Bias; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; Technology Industry; United States
      Citation
      Purchase
      Related
      Ascarza, Eva, and Ayelet Israeli. "Artea (A), (B), (C), and (D): Designing Targeting Strategies." Harvard Business School Teaching Note 521-041, September 2020. (Revised February 2024.)
      • September 2020 (Revised July 2022)
      • Exercise

      Artea (B): Including Customer-Level Demographic Data

      By: Eva Ascarza and Ayelet Israeli
      This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and targeting. Parts (B),(C),(D) Introduce algorithmic bias. The... View Details
      Keywords: Targeting; Algorithmic Bias; Race; Gender; Marketing; Diversity; Customer Relationship Management; Demographics; Prejudice and Bias; Retail Industry; Apparel and Accessories Industry; Technology Industry; United States
      Citation
      Purchase
      Related
      Ascarza, Eva, and Ayelet Israeli. "Artea (B): Including Customer-Level Demographic Data." Harvard Business School Exercise 521-022, September 2020. (Revised July 2022.)
      • 1
      • 2
      • →

      Are you looking for?

      →Search All HBS Web
      ǁ
      Campus Map
      Harvard Business School
      Soldiers Field
      Boston, MA 02163
      →Map & Directions
      →More Contact Information
      • Make a Gift
      • Site Map
      • Jobs
      • Harvard University
      • Trademarks
      • Policies
      • Accessibility
      • Digital Accessibility
      Copyright © President & Fellows of Harvard College.