Filter Results:
(50)
Show Results For
- All HBS Web
(785)
- Faculty Publications (50)
Show Results For
- All HBS Web
(785)
- Faculty Publications (50)
Page 1 of 50
Results →
- January 2025
- Case
Duolingo: On a "Streak"
By: Jeffrey F. Rayport, Nicole Tempest Keller and Nicole Luo
In December 2024, Severin Hacker, Co-Founder and Chief Technology Officer of Duolingo, reflected on the remarkable evolution of the language-learning app he helped launch in 2011. As the #1 most downloaded education app in the world, Duolingo had over 100 million... View Details
- July 2024
- Article
Chatbots and Mental Health: Insights into the Safety of Generative AI
By: Julian De Freitas, Ahmet Kaan Uğuralp, Zeliha Uğuralp and Stefano Puntoni
Chatbots are now able to engage in sophisticated conversations with consumers. Due to the ‘black box’ nature of the algorithms, it is impossible to predict in advance how these conversations will unfold. Behavioral research provides little insight into potential safety... View Details
Keywords: Autonomy; Chatbots; New Technology; Brand Crises; Mental Health; Large Language Model; AI and Machine Learning; Behavior; Well-being; Technological Innovation; Ethics
De Freitas, Julian, Ahmet Kaan Uğuralp, Zeliha Uğuralp, and Stefano Puntoni. "Chatbots and Mental Health: Insights into the Safety of Generative AI." Journal of Consumer Psychology 34, no. 3 (July 2024): 481–491.
- July 2024
- Case
Replika AI: Alleviating Loneliness (A)
By: Shikhar Ghosh and Shweta Bagai
Eugenia Kuyda launched Replika AI in 2017 as an empathetic digital companion to combat loneliness and provide emotional support. The platform surged in popularity during the COVID-19 pandemic, offering non-judgmental support to isolated users. By 2023, Replika boasted... View Details
Keywords: Entrepreneurship; Ethics; Health Pandemics; AI and Machine Learning; Well-being; Technology Industry
Ghosh, Shikhar, and Shweta Bagai. "Replika AI: Alleviating Loneliness (A)." Harvard Business School Case 824-088, July 2024.
- 2024
- Working Paper
AI Companions Reduce Loneliness
By: Julian De Freitas, Ahmet K Uguralp, Zeliha O Uguralp and Puntoni Stefano
Chatbots are now able to engage in sophisticated conversations with consumers in the domain of relationships, providing a potential coping solution to widescale societal loneliness. Behavioral research provides little insight into whether these applications are... View Details
De Freitas, Julian, Ahmet K Uguralp, Zeliha O Uguralp, and Puntoni Stefano. "AI Companions Reduce Loneliness." Harvard Business School Working Paper, No. 24-078, June 2024.
- June 2024 (Revised September 2024)
- Case
Driving Scale with Otto
By: Rebecca Karp, David Allen and Annelena Lobb
This case asks how startup founders make scaling decisions in light of their priorities for their business and for themselves. Otto was a technology company that applied artificial intelligence technology to sales. It deployed natural language processing to find sales... View Details
Keywords: Artificial Intelligence; Natural Language Processing; B2B; B2B Innovation; Scaling; Scaling Tech Ventures; Business Startups; AI and Machine Learning; Finance; Sales; Business Strategy; Growth and Development Strategy; Entrepreneurship; Information Technology Industry; United States; Cambridge; New York (city, NY); Spain
Karp, Rebecca, David Allen, and Annelena Lobb. "Driving Scale with Otto." Harvard Business School Case 724-407, June 2024. (Revised September 2024.)
- February 2024
- Article
Conveying and Detecting Listening in Live Conversation
By: Hanne Collins, Julia A. Minson, Ariella S. Kristal and Alison Wood Brooks
Across all domains of human social life, positive perceptions of conversational listening (i.e., feeling heard) predict well-being, professional success, and interpersonal flourishing. But a fundamental question remains: Are perceptions of listening accurate? Prior... View Details
Collins, Hanne, Julia A. Minson, Ariella S. Kristal, and Alison Wood Brooks. "Conveying and Detecting Listening in Live Conversation." Journal of Experimental Psychology: General 153, no. 2 (February 2024): 473–494.
- 2024
- Working Paper
The Value of Open Source Software
By: Manuel Hoffmann, Frank Nagle and Yanuo Zhou
The value of a non-pecuniary (free) product is inherently difficult to assess. A pervasive
example is open source software (OSS), a global public good that plays a vital role in the economy
and is foundational for most technology we use today. However, it is... View Details
Hoffmann, Manuel, Frank Nagle, and Yanuo Zhou. "The Value of Open Source Software." Harvard Business School Working Paper, No. 24-038, January 2024.
- 2024
- Conference Paper
Quantifying Uncertainty in Natural Language Explanations of Large Language Models
By: Himabindu Lakkaraju, Sree Harsha Tanneru and Chirag Agarwal
Large Language Models (LLMs) are increasingly used as powerful tools for several
high-stakes natural language processing (NLP) applications. Recent prompting
works claim to elicit intermediate reasoning steps and key tokens that serve as
proxy explanations for LLM... View Details
Lakkaraju, Himabindu, Sree Harsha Tanneru, and Chirag Agarwal. "Quantifying Uncertainty in Natural Language Explanations of Large Language Models." Paper presented at the Society for Artificial Intelligence and Statistics, 2024.
- 2023
- Article
Post Hoc Explanations of Language Models Can Improve Language Models
By: Satyapriya Krishna, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh and Himabindu Lakkaraju
Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance... View Details
Krishna, Satyapriya, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh, and Himabindu Lakkaraju. "Post Hoc Explanations of Language Models Can Improve Language Models." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- 2023
- Other Article
The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and Multi-Purpose Corpus of Patent Applications
By: Mirac Suzgun, Luke Melas-Kyriazi, Suproteem K. Sarkar, Scott Duke Kominers and Stuart Shieber
Innovation is a major driver of economic and social development, and information about many kinds of innovation is embedded in semi-structured data from patents and patent applications. Though the impact and novelty of innovations expressed in patent data are difficult... View Details
Keywords: USPTO; Natural Language Processing; Classification; Summarization; Patent Novelty; Patent Trolls; Patent Enforceability; Patents; Innovation and Invention; Intellectual Property; AI and Machine Learning; Analytics and Data Science
Suzgun, Mirac, Luke Melas-Kyriazi, Suproteem K. Sarkar, Scott Duke Kominers, and Stuart Shieber. "The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and Multi-Purpose Corpus of Patent Applications." Conference on Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks Track 36 (2023).
- 2023
- Working Paper
Toward a Better Understanding of Open Ecosystems: Implications for Policymakers
By: Feng Zhu and Carmelo Cennamo
The digital realm is undergoing a significant transformation, marked by the emergence of platform
business models and the concept of open ecosystems. This paper delves into the intricate nature of
ecosystem openness, underscoring the point that the openness of... View Details
Zhu, Feng, and Carmelo Cennamo. "Toward a Better Understanding of Open Ecosystems: Implications for Policymakers." Working Paper, November 2023.
- October 2023
- Case
Fixie and Conversational AI Sidekicks
By: Jeffrey J. Bussgang and Carin-Isabel Knoop
In March 2023, Fixie Co-Founder and Chief Architect Matt Welsh and co-founders had the kind of meeting no founders want to have. The president of leading artificial intelligence (AI) research and deployment firm OpenAI, which had catapulted into fame with its ChatGPT... View Details
Keywords: Large Language Model; Entrepreneurship; Decision Choices and Conditions; AI and Machine Learning; Technological Innovation; Competitive Strategy; Technology Industry; United States
Bussgang, Jeffrey J., and Carin-Isabel Knoop. "Fixie and Conversational AI Sidekicks." Harvard Business School Case 824-037, October 2023.
- October–December 2023
- Article
A Practical Guide to Conversation Research: How to Study What People Say to Each Other
By: Michael Yeomans, Katelynn Boland, Hanne K. Collins, Nicole Abi-Esber and Alison Wood Brooks
Conversation—a verbal interaction between two or more people—is a complex, pervasive, and consequential human behavior. Conversations have been studied across many academic disciplines. However, advances in recording and analysis techniques over the last decade have... View Details
Yeomans, Michael, Katelynn Boland, Hanne K. Collins, Nicole Abi-Esber, and Alison Wood Brooks. "A Practical Guide to Conversation Research: How to Study What People Say to Each Other." Advances in Methods and Practices in Psychological Science 6, no. 4 (October–December 2023).
- August 2023
- Article
Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel
By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet models have become more complex and harder to understand. To understand complex models, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use... View Details
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel." Nature Machine Intelligence 5, no. 8 (August 2023): 873–883.
- August 29, 2023
- Article
The Fragility of Artists’ Reputations from 1795 to 2020
By: Letian Zhang, Mitali Banerjee, Shinan Wang and Zhuoqiao Hong
This study explores the longevity of artistic reputation. We empirically examine whether artists are more- or less-venerated after their death. We construct a massive historical corpus spanning 1795 to 2020 and build separate word-embedding models for each five-year... View Details
Zhang, Letian, Mitali Banerjee, Shinan Wang, and Zhuoqiao Hong. "The Fragility of Artists’ Reputations from 1795 to 2020." Proceedings of the National Academy of Sciences 120, no. 35 (August 29, 2023).
- 2023
- Working Paper
Beyond the Hype: Unveiling the Marginal Benefits of 3D Virtual Tours in Real Estate
By: Mengxia Zhang and Isamar Troncoso
3D virtual tours (VTs) have become a popular digital tool in real estate platforms, enabling potential buyers to virtually walk through the houses they search for online. In this paper, we study home sellers’ adoption of VTs and the VTs’ relative benefits compared to... View Details
Zhang, Mengxia, and Isamar Troncoso. "Beyond the Hype: Unveiling the Marginal Benefits of 3D Virtual Tours in Real Estate." Harvard Business School Working Paper, No. 24-003, July 2023.
- 2023
- Working Paper
Operational Impact of Communication Channels: Evidence from Last-Mile Delivery Services
By: Natalie Epstein, Santiago Gallino and Antonio Moreno
Communication channels are often used to improve customer satisfaction and behavior. This paper studies
how they can be used to enhance operational performance.
We partner with a last-mile delivery company and, through natural and field experiments, explore... View Details
We partner with a last-mile delivery company and, through natural and field experiments, explore... View Details
Epstein, Natalie, Santiago Gallino, and Antonio Moreno. "Operational Impact of Communication Channels: Evidence from Last-Mile Delivery Services." Working Paper, May 2023.
- 2024
- Working Paper
Using LLMs for Market Research
By: James Brand, Ayelet Israeli and Donald Ngwe
Large language models (LLMs) have rapidly gained popularity as labor-augmenting
tools for programming, writing, and many other processes that benefit from quick text
generation. In this paper we explore the uses and benefits of LLMs for researchers and
practitioners... View Details
Keywords: Large Language Model; Research; AI and Machine Learning; Analysis; Customers; Consumer Behavior; Technology Industry; Information Technology Industry
Brand, James, Ayelet Israeli, and Donald Ngwe. "Using LLMs for Market Research." Harvard Business School Working Paper, No. 23-062, April 2023. (Revised July 2024.)
- March 2023
- Article
Authentic First Impressions Relate to Interpersonal, Social, and Entrepreneurial Success
By: David M. Markowitz, Maryam Kouchaki, Francesca Gino, Jeffrey T. Hancock and Ryan L. Boyd
This paper examines how verbal authenticity influences person perception. Our work combines human judgments and natural language processing to suggest verbal authenticity is a positive predictor of interpersonal interest (Study 1: 294 dyadic conversations), engagement... View Details
Keywords: Authenticity; Impression Formation; Natural Language Processing; First Impressions; Communication; Perception; Success
Markowitz, David M., Maryam Kouchaki, Francesca Gino, Jeffrey T. Hancock, and Ryan L. Boyd. "Authentic First Impressions Relate to Interpersonal, Social, and Entrepreneurial Success." Social Psychological & Personality Science 14, no. 2 (March 2023): 107–116.
- 2023
- Working Paper
Sending Signals: Strategic Displays of Warmth and Competence
By: Bushra S. Guenoun and Julian J. Zlatev
Using a combination of exploratory and confirmatory approaches, this research examines how
people signal important information about themselves to others. We first train machine learning
models to assess the use of warmth and competence impression management... View Details
Keywords: AI and Machine Learning; Personal Characteristics; Perception; Interpersonal Communication
Guenoun, Bushra S., and Julian J. Zlatev. "Sending Signals: Strategic Displays of Warmth and Competence." Harvard Business School Working Paper, No. 23-051, February 2023.