Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (2) Arrow Down
Filter Results: (2) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (4)
    • Faculty Publications  (2)

    Show Results For

    • All HBS Web  (4)
      • Faculty Publications  (2)

      Gaussian ProcessesRemove Gaussian Processes →

      Page 1 of 2 Results

      Are you looking for?

      →Search All HBS Web
      • April 2024
      • Article

      Detecting Routines: Applications to Ridesharing CRM

      By: Ryan Dew, Eva Ascarza, Oded Netzer and Nachum Sicherman
      Routines shape many aspects of day-to-day consumption. While prior work has established the importance of habits in consumer behavior, little work has been done to understand the implications of routines—which we define as repeated behaviors with recurring, temporal... View Details
      Keywords: Ride-sharing; Routine; Machine Learning; Customer Relationship Management; Consumer Behavior; Segmentation
      Citation
      Find at Harvard
      Purchase
      Related
      Dew, Ryan, Eva Ascarza, Oded Netzer, and Nachum Sicherman. "Detecting Routines: Applications to Ridesharing CRM." Journal of Marketing Research (JMR) 61, no. 2 (April 2024): 368–392.
      • November 2021
      • Article

      Gaussian Process Subset Scanning for Anomalous Pattern Detection in Non-iid Data

      By: William Herlands, Edward McFowland III, Andrew Gordon Wilson and Daniel B. Neill
      Identifying anomalous patterns in real-world data is essential for understanding where, when, and how systems deviate from their expected dynamics. Yet methods that separately consider the anomalousness of each individual data point have low detection power for subtle,... View Details
      Keywords: Pattern Detection; Subset Scanning; Gaussian Processes; Mathematical Methods
      Citation
      Read Now
      Related
      Herlands, William, Edward McFowland III, Andrew Gordon Wilson, and Daniel B. Neill. "Gaussian Process Subset Scanning for Anomalous Pattern Detection in Non-iid Data." Proceedings of Machine Learning Research (PMLR) 84 (2018): 425–434. (Also presented at the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 2018.)
      • 1

      Are you looking for?

      →Search All HBS Web
      ǁ
      Campus Map
      Harvard Business School
      Soldiers Field
      Boston, MA 02163
      →Map & Directions
      →More Contact Information
      • Make a Gift
      • Site Map
      • Jobs
      • Harvard University
      • Trademarks
      • Policies
      • Accessibility
      • Digital Accessibility
      Copyright © President & Fellows of Harvard College.