Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (29) Arrow Down
Filter Results: (29) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (116)
    • Faculty Publications  (29)

    Show Results For

    • All HBS Web  (116)
      • Faculty Publications  (29)

      Explanation MethodsRemove Explanation Methods →

      Page 1 of 29 Results →

      Are you looking for?

      →Search All HBS Web
      • 2025
      • Working Paper

      Home Sweet Home: How Much Do Employees Value Remote Work?

      By: Zoë B. Cullen, Bobak Pakzad-Hurson and Ricardo Perez-Truglia
      We estimate the value employees place on remote work using revealed preferences in a high-stakes, real-world context, focusing on U.S. tech workers. On average, employees are willing to accept a 25% pay cut for partly or fully remote roles. Our estimates are three to... View Details
      Keywords: Employees; Compensation and Benefits; Satisfaction; Value; Research
      Citation
      Find at Harvard
      Register to Read
      Related
      Cullen, Zoë B., Bobak Pakzad-Hurson, and Ricardo Perez-Truglia. "Home Sweet Home: How Much Do Employees Value Remote Work?" NBER Working Paper Series, No. 33383, January 2025.
      • 2023
      • Article

      M4: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities, and Models

      By: Himabindu Lakkaraju, Xuhong Li, Mengnan Du, Jiamin Chen, Yekun Chai and Haoyi Xiong
      While Explainable Artificial Intelligence (XAI) techniques have been widely studied to explain predictions made by deep neural networks, the way to evaluate the faithfulness of explanation results remains challenging, due to the heterogeneity of explanations for... View Details
      Keywords: AI and Machine Learning
      Citation
      Related
      Lakkaraju, Himabindu, Xuhong Li, Mengnan Du, Jiamin Chen, Yekun Chai, and Haoyi Xiong. "M4: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities, and Models." Advances in Neural Information Processing Systems (NeurIPS) (2023).
      • 2023
      • Article

      Post Hoc Explanations of Language Models Can Improve Language Models

      By: Satyapriya Krishna, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh and Himabindu Lakkaraju
      Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance... View Details
      Keywords: AI and Machine Learning; Performance Effectiveness
      Citation
      Read Now
      Related
      Krishna, Satyapriya, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh, and Himabindu Lakkaraju. "Post Hoc Explanations of Language Models Can Improve Language Models." Advances in Neural Information Processing Systems (NeurIPS) (2023).
      • 2023
      • Article

      Verifiable Feature Attributions: A Bridge between Post Hoc Explainability and Inherent Interpretability

      By: Usha Bhalla, Suraj Srinivas and Himabindu Lakkaraju
      With the increased deployment of machine learning models in various real-world applications, researchers and practitioners alike have emphasized the need for explanations of model behaviour. To this end, two broad strategies have been outlined in prior literature to... View Details
      Keywords: AI and Machine Learning; Mathematical Methods
      Citation
      Read Now
      Related
      Bhalla, Usha, Suraj Srinivas, and Himabindu Lakkaraju. "Verifiable Feature Attributions: A Bridge between Post Hoc Explainability and Inherent Interpretability." Advances in Neural Information Processing Systems (NeurIPS) (2023).
      • 2023
      • Article

      Which Models Have Perceptually-Aligned Gradients? An Explanation via Off-Manifold Robustness

      By: Suraj Srinivas, Sebastian Bordt and Himabindu Lakkaraju
      One of the remarkable properties of robust computer vision models is that their input-gradients are often aligned with human perception, referred to in the literature as perceptually-aligned gradients (PAGs). Despite only being trained for classification, PAGs cause... View Details
      Keywords: AI and Machine Learning; Mathematical Methods
      Citation
      Read Now
      Related
      Srinivas, Suraj, Sebastian Bordt, and Himabindu Lakkaraju. "Which Models Have Perceptually-Aligned Gradients? An Explanation via Off-Manifold Robustness." Advances in Neural Information Processing Systems (NeurIPS) (2023).
      • 2023
      • Article

      On Minimizing the Impact of Dataset Shifts on Actionable Explanations

      By: Anna P. Meyer, Dan Ley, Suraj Srinivas and Himabindu Lakkaraju
      The Right to Explanation is an important regulatory principle that allows individuals to request actionable explanations for algorithmic decisions. However, several technical challenges arise when providing such actionable explanations in practice. For instance, models... View Details
      Keywords: Mathematical Methods; Analytics and Data Science
      Citation
      Read Now
      Related
      Meyer, Anna P., Dan Ley, Suraj Srinivas, and Himabindu Lakkaraju. "On Minimizing the Impact of Dataset Shifts on Actionable Explanations." Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI) 39th (2023): 1434–1444.
      • August 2023
      • Article

      Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel

      By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
      Practitioners increasingly use machine learning (ML) models, yet models have become more complex and harder to understand. To understand complex models, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use... View Details
      Keywords: AI and Machine Learning; Technological Innovation; Technology Adoption
      Citation
      Read Now
      Related
      Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel." Nature Machine Intelligence 5, no. 8 (August 2023): 873–883.
      • 2023
      • Article

      Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten

      By: Himabindu Lakkaraju, Satyapriya Krishna and Jiaqi Ma
      The Right to Explanation and the Right to be Forgotten are two important principles outlined to regulate algorithmic decision making and data usage in real-world applications. While the right to explanation allows individuals to request an actionable explanation for an... View Details
      Keywords: Analytics and Data Science; AI and Machine Learning; Decision Making; Governing Rules, Regulations, and Reforms
      Citation
      Read Now
      Related
      Lakkaraju, Himabindu, Satyapriya Krishna, and Jiaqi Ma. "Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten." Proceedings of the International Conference on Machine Learning (ICML) 40th (2023): 17808–17826.
      • 2022
      • Article

      OpenXAI: Towards a Transparent Evaluation of Model Explanations

      By: Chirag Agarwal, Satyapriya Krishna, Eshika Saxena, Martin Pawelczyk, Nari Johnson, Isha Puri, Marinka Zitnik and Himabindu Lakkaraju
      While several types of post hoc explanation methods have been proposed in recent literature, there is very little work on systematically benchmarking these methods. Here, we introduce OpenXAI, a comprehensive and extensible opensource framework for evaluating and... View Details
      Keywords: Measurement and Metrics; Analytics and Data Science
      Citation
      Read Now
      Related
      Agarwal, Chirag, Satyapriya Krishna, Eshika Saxena, Martin Pawelczyk, Nari Johnson, Isha Puri, Marinka Zitnik, and Himabindu Lakkaraju. "OpenXAI: Towards a Transparent Evaluation of Model Explanations." Advances in Neural Information Processing Systems (NeurIPS) (2022).
      • 2022
      • Article

      Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post hoc Explanations

      By: Tessa Han, Suraj Srinivas and Himabindu Lakkaraju
      A critical problem in the field of post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This... View Details
      Keywords: Mathematical Methods; Decision Choices and Conditions; Analytics and Data Science
      Citation
      Read Now
      Related
      Han, Tessa, Suraj Srinivas, and Himabindu Lakkaraju. "Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post hoc Explanations." Advances in Neural Information Processing Systems (NeurIPS) (2022). (Best Paper Award, International Conference on Machine Learning (ICML) Workshop on Interpretable ML in Healthcare.)
      • 2022
      • Article

      Fairness via Explanation Quality: Evaluating Disparities in the Quality of Post hoc Explanations

      By: Jessica Dai, Sohini Upadhyay, Ulrich Aivodji, Stephen Bach and Himabindu Lakkaraju
      As post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to ensure that the quality of the resulting explanations is consistently high across all subgroups of a population. For instance, it... View Details
      Keywords: Prejudice and Bias; Mathematical Methods; Research; Analytics and Data Science
      Citation
      Read Now
      Purchase
      Related
      Dai, Jessica, Sohini Upadhyay, Ulrich Aivodji, Stephen Bach, and Himabindu Lakkaraju. "Fairness via Explanation Quality: Evaluating Disparities in the Quality of Post hoc Explanations." Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (2022): 203–214.
      • 2022
      • Conference Presentation

      Towards the Unification and Robustness of Post hoc Explanation Methods

      By: Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu and Himabindu Lakkaraju
      As machine learning black boxes are increasingly being deployed in critical domains such as healthcare and criminal justice, there has been a growing emphasis on developing techniques for explaining these black boxes in a post hoc manner. In this work, we analyze two... View Details
      Keywords: AI and Machine Learning
      Citation
      Read Now
      Related
      Agarwal, Sushant, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu, and Himabindu Lakkaraju. "Towards the Unification and Robustness of Post hoc Explanation Methods." Paper presented at the 3rd Symposium on Foundations of Responsible Computing (FORC), 2022.
      • 2022
      • Article

      Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis.

      By: Martin Pawelczyk, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay and Himabindu Lakkaraju
      As machine learning (ML) models become more widely deployed in high-stakes applications, counterfactual explanations have emerged as key tools for providing actionable model explanations in practice. Despite the growing popularity of counterfactual explanations, a... View Details
      Keywords: Machine Learning Models; Counterfactual Explanations; Adversarial Examples; Mathematical Methods
      Citation
      Read Now
      Related
      Pawelczyk, Martin, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay, and Himabindu Lakkaraju. "Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
      • 2022
      • Article

      Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods.

      By: Chirag Agarwal, Marinka Zitnik and Himabindu Lakkaraju
      As Graph Neural Networks (GNNs) are increasingly employed in real-world applications, it becomes critical to ensure that the stakeholders understand the rationale behind their predictions. While several GNN explanation methods have been proposed recently, there has... View Details
      Keywords: Graph Neural Networks; Explanation Methods; Mathematical Methods; Framework; Theory; Analysis
      Citation
      Read Now
      Related
      Agarwal, Chirag, Marinka Zitnik, and Himabindu Lakkaraju. "Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
      • 2022
      • Working Paper

      The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective

      By: Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu and Himabindu Lakkaraju
      As various post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to develop a deeper understanding of if and when the explanations output by these methods disagree with each other, and how... View Details
      Keywords: AI and Machine Learning; Analytics and Data Science; Mathematical Methods
      Citation
      Read Now
      Related
      Krishna, Satyapriya, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu, and Himabindu Lakkaraju. "The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective." Working Paper, 2022.
      • 2022
      • Working Paper

      TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations

      By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
      Practitioners increasingly use machine learning (ML) models, yet they have become more complex and harder to understand. To address this issue, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use explainability... View Details
      Keywords: Natural Language Conversations; Predictive Models; AI and Machine Learning
      Citation
      Read Now
      Related
      Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations." Working Paper, 2022.
      • Article

      Counterfactual Explanations Can Be Manipulated

      By: Dylan Slack, Sophie Hilgard, Himabindu Lakkaraju and Sameer Singh
      Counterfactual explanations are useful for both generating recourse and auditing fairness between groups. We seek to understand whether adversaries can manipulate counterfactual explanations in an algorithmic recourse setting: if counterfactual explanations indicate... View Details
      Keywords: Machine Learning Models; Counterfactual Explanations
      Citation
      Read Now
      Related
      Slack, Dylan, Sophie Hilgard, Himabindu Lakkaraju, and Sameer Singh. "Counterfactual Explanations Can Be Manipulated." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
      • Article

      Reliable Post hoc Explanations: Modeling Uncertainty in Explainability

      By: Dylan Slack, Sophie Hilgard, Sameer Singh and Himabindu Lakkaraju
      As black box explanations are increasingly being employed to establish model credibility in high stakes settings, it is important to ensure that these explanations are accurate and reliable. However, prior work demonstrates that explanations generated by... View Details
      Keywords: Black Box Explanations; Bayesian Modeling; Decision Making; Risk and Uncertainty; Information Technology
      Citation
      Read Now
      Related
      Slack, Dylan, Sophie Hilgard, Sameer Singh, and Himabindu Lakkaraju. "Reliable Post hoc Explanations: Modeling Uncertainty in Explainability." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
      • Article

      Learning Models for Actionable Recourse

      By: Alexis Ross, Himabindu Lakkaraju and Osbert Bastani
      As machine learning models are increasingly deployed in high-stakes domains such as legal and financial decision-making, there has been growing interest in post-hoc methods for generating counterfactual explanations. Such explanations provide individuals adversely... View Details
      Keywords: Machine Learning Models; Recourse; Algorithm; Mathematical Methods
      Citation
      Read Now
      Related
      Ross, Alexis, Himabindu Lakkaraju, and Osbert Bastani. "Learning Models for Actionable Recourse." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
      • Article

      Towards the Unification and Robustness of Perturbation and Gradient Based Explanations

      By: Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu and Himabindu Lakkaraju
      As machine learning black boxes are increasingly being deployed in critical domains such as healthcare and criminal justice, there has been a growing emphasis on developing techniques for explaining these black boxes in a post hoc manner. In this work, we analyze two... View Details
      Keywords: Machine Learning; Black Box Explanations; Decision Making; Forecasting and Prediction; Information Technology
      Citation
      Read Now
      Related
      Agarwal, Sushant, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu, and Himabindu Lakkaraju. "Towards the Unification and Robustness of Perturbation and Gradient Based Explanations." Proceedings of the International Conference on Machine Learning (ICML) 38th (2021).
      • 1
      • 2
      • →

      Are you looking for?

      →Search All HBS Web
      ǁ
      Campus Map
      Harvard Business School
      Soldiers Field
      Boston, MA 02163
      →Map & Directions
      →More Contact Information
      • Make a Gift
      • Site Map
      • Jobs
      • Harvard University
      • Trademarks
      • Policies
      • Accessibility
      • Digital Accessibility
      Copyright © President & Fellows of Harvard College.