Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (37) Arrow Down
Filter Results: (37) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (198)
    • Faculty Publications  (37)

    Show Results For

    • All HBS Web  (198)
      • Faculty Publications  (37)

      Experimental MethodsRemove Experimental Methods →

      Page 1 of 37 Results →

      Are you looking for?

      →Search All HBS Web
      • 2025
      • Book

      The Experimentation Machine: Finding Product–Market Fit in the Age of AI

      By: Jeffrey J. Bussgang
      Leverage AI to be a 10x Founder

      Today’s most successful founders know that the startups that learn the fastest will win. In The Experimentation Machine, I reveal how AI is transforming the way startups find product-market fit and scale.... View Details
      Keywords: AI; Founder; Startup; AI and Machine Learning; Technology Adoption; Business Startups; Entrepreneurship; Market Entry and Exit
      Citation
      Purchase
      Related
      Bussgang, Jeffrey J. The Experimentation Machine: Finding Product–Market Fit in the Age of AI. Damn Gravity Media, 2025.
      • March 2025
      • Article

      Novice Risk Work: How Juniors Coaching Seniors on Emerging Technologies Such as Generative AI Can Lead to Learning Failures

      By: Katherine C. Kellogg, Hila Lifshitz-Assaf, Steven Randazzo, Ethan Mollick, Fabrizio Dell'Acqua, Edward McFowland III, François Candelon and Karim R. Lakhani
      The literature on communities of practice demonstrates that a proven way for senior professionals to upskill themselves in the use of new technologies that undermine existing expertise is to learn from junior professionals. It notes that juniors may be better able... View Details
      Keywords: Rank and Position; Competency and Skills; Technology Adoption; Experience and Expertise; AI and Machine Learning
      Citation
      Read Now
      Related
      Kellogg, Katherine C., Hila Lifshitz-Assaf, Steven Randazzo, Ethan Mollick, Fabrizio Dell'Acqua, Edward McFowland III, François Candelon, and Karim R. Lakhani. "Novice Risk Work: How Juniors Coaching Seniors on Emerging Technologies Such as Generative AI Can Lead to Learning Failures." Art. 100559. Information and Organization 35, no. 1 (March 2025).
      • 2023
      • Working Paper

      An Experimental Design for Anytime-Valid Causal Inference on Multi-Armed Bandits

      By: Biyonka Liang and Iavor I. Bojinov
      Typically, multi-armed bandit (MAB) experiments are analyzed at the end of the study and thus require the analyst to specify a fixed sample size in advance. However, in many online learning applications, it is advantageous to continuously produce inference on the... View Details
      Keywords: Analytics and Data Science; AI and Machine Learning; Mathematical Methods
      Citation
      Read Now
      Related
      Liang, Biyonka, and Iavor I. Bojinov. "An Experimental Design for Anytime-Valid Causal Inference on Multi-Armed Bandits." Harvard Business School Working Paper, No. 24-057, March 2024.
      • 2023
      • Article

      Balancing Risk and Reward: An Automated Phased Release Strategy

      By: Yufan Li, Jialiang Mao and Iavor Bojinov
      Phased releases are a common strategy in the technology industry for gradually releasing new products or updates through a sequence of A/B tests in which the number of treated units gradually grows until full deployment or deprecation. Performing phased releases in a... View Details
      Keywords: Product Launch; Mathematical Methods; Product Development
      Citation
      Read Now
      Related
      Li, Yufan, Jialiang Mao, and Iavor Bojinov. "Balancing Risk and Reward: An Automated Phased Release Strategy." Advances in Neural Information Processing Systems (NeurIPS) (2023).
      • 2023
      • Article

      Post Hoc Explanations of Language Models Can Improve Language Models

      By: Satyapriya Krishna, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh and Himabindu Lakkaraju
      Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance... View Details
      Keywords: AI and Machine Learning; Performance Effectiveness
      Citation
      Read Now
      Related
      Krishna, Satyapriya, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh, and Himabindu Lakkaraju. "Post Hoc Explanations of Language Models Can Improve Language Models." Advances in Neural Information Processing Systems (NeurIPS) (2023).
      • 2023
      • Working Paper

      In-Context Unlearning: Language Models as Few Shot Unlearners

      By: Martin Pawelczyk, Seth Neel and Himabindu Lakkaraju
      Machine unlearning, the study of efficiently removing the impact of specific training points on the trained model, has garnered increased attention of late, driven by the need to comply with privacy regulations like the Right to be Forgotten. Although unlearning is... View Details
      Keywords: AI and Machine Learning; Copyright; Information
      Citation
      Read Now
      Related
      Pawelczyk, Martin, Seth Neel, and Himabindu Lakkaraju. "In-Context Unlearning: Language Models as Few Shot Unlearners." Working Paper, October 2023.
      • 2023
      • Article

      On Minimizing the Impact of Dataset Shifts on Actionable Explanations

      By: Anna P. Meyer, Dan Ley, Suraj Srinivas and Himabindu Lakkaraju
      The Right to Explanation is an important regulatory principle that allows individuals to request actionable explanations for algorithmic decisions. However, several technical challenges arise when providing such actionable explanations in practice. For instance, models... View Details
      Keywords: Mathematical Methods; Analytics and Data Science
      Citation
      Read Now
      Related
      Meyer, Anna P., Dan Ley, Suraj Srinivas, and Himabindu Lakkaraju. "On Minimizing the Impact of Dataset Shifts on Actionable Explanations." Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI) 39th (2023): 1434–1444.
      • 2023
      • Article

      Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten

      By: Himabindu Lakkaraju, Satyapriya Krishna and Jiaqi Ma
      The Right to Explanation and the Right to be Forgotten are two important principles outlined to regulate algorithmic decision making and data usage in real-world applications. While the right to explanation allows individuals to request an actionable explanation for an... View Details
      Keywords: Analytics and Data Science; AI and Machine Learning; Decision Making; Governing Rules, Regulations, and Reforms
      Citation
      Read Now
      Related
      Lakkaraju, Himabindu, Satyapriya Krishna, and Jiaqi Ma. "Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten." Proceedings of the International Conference on Machine Learning (ICML) 40th (2023): 17808–17826.
      • July 2023
      • Article

      Design and Analysis of Switchback Experiments

      By: Iavor I Bojinov, David Simchi-Levi and Jinglong Zhao
      In switchback experiments, a firm sequentially exposes an experimental unit to a random treatment, measures its response, and repeats the procedure for several periods to determine which treatment leads to the best outcome. Although practitioners have widely adopted... View Details
      Keywords: Switchback Experiments; Design; Analysis; Mathematical Methods
      Citation
      Find at Harvard
      Read Now
      Purchase
      Related
      Bojinov, Iavor I., David Simchi-Levi, and Jinglong Zhao. "Design and Analysis of Switchback Experiments." Management Science 69, no. 7 (July 2023): 3759–3777.
      • 2023
      • Working Paper

      Design-Based Confidence Sequences: A General Approach to Risk Mitigation in Online Experimentation

      By: Dae Woong Ham, Michael Lindon, Martin Tingley and Iavor Bojinov
      Randomized experiments have become the standard method for companies to evaluate the performance of new products or services. In addition to augmenting managers’ decision-making, experimentation mitigates risk by limiting the proportion of customers exposed to... View Details
      Keywords: Performance Evaluation; Research and Development; Analytics and Data Science; Consumer Behavior
      Citation
      SSRN
      Read Now
      Related
      Ham, Dae Woong, Michael Lindon, Martin Tingley, and Iavor Bojinov. "Design-Based Confidence Sequences: A General Approach to Risk Mitigation in Online Experimentation." Harvard Business School Working Paper, No. 23-070, May 2023.
      • 2023
      • Article

      Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse

      By: Martin Pawelczyk, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci and Himabindu Lakkaraju
      As machine learning models are increasingly being employed to make consequential decisions in real-world settings, it becomes critical to ensure that individuals who are adversely impacted (e.g., loan denied) by the predictions of these models are provided with a means... View Details
      Keywords: AI and Machine Learning; Decision Choices and Conditions; Mathematical Methods
      Citation
      Read Now
      Related
      Pawelczyk, Martin, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci, and Himabindu Lakkaraju. "Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse." Proceedings of the International Conference on Learning Representations (ICLR) (2023).
      • 2023
      • Working Paper

      Nailing Prediction: Experimental Evidence on the Value of Tools in Predictive Model Development

      By: Daniel Yue, Paul Hamilton and Iavor Bojinov
      Predictive model development is understudied despite its centrality in modern artificial intelligence and machine learning business applications. Although prior discussions highlight advances in methods (along the dimensions of data, computing power, and algorithms)... View Details
      Keywords: Analytics and Data Science
      Citation
      SSRN
      Read Now
      Related
      Yue, Daniel, Paul Hamilton, and Iavor Bojinov. "Nailing Prediction: Experimental Evidence on the Value of Tools in Predictive Model Development." Harvard Business School Working Paper, No. 23-029, December 2022. (Revised April 2023.)
      • 2022
      • Article

      Data Poisoning Attacks on Off-Policy Evaluation Methods

      By: Elita Lobo, Harvineet Singh, Marek Petrik, Cynthia Rudin and Himabindu Lakkaraju
      Off-policy Evaluation (OPE) methods are a crucial tool for evaluating policies in high-stakes domains such as healthcare, where exploration is often infeasible, unethical, or expensive. However, the extent to which such methods can be trusted under adversarial threats... View Details
      Keywords: Analytics and Data Science; Cybersecurity; Mathematical Methods
      Citation
      Read Now
      Related
      Lobo, Elita, Harvineet Singh, Marek Petrik, Cynthia Rudin, and Himabindu Lakkaraju. "Data Poisoning Attacks on Off-Policy Evaluation Methods." Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI) 38th (2022): 1264–1274.
      • 2022
      • Article

      Towards Robust Off-Policy Evaluation via Human Inputs

      By: Harvineet Singh, Shalmali Joshi, Finale Doshi-Velez and Himabindu Lakkaraju
      Off-policy Evaluation (OPE) methods are crucial tools for evaluating policies in high-stakes domains such as healthcare, where direct deployment is often infeasible, unethical, or expensive. When deployment environments are expected to undergo changes (that is, dataset... View Details
      Keywords: Analytics and Data Science; Research
      Citation
      Find at Harvard
      Purchase
      Related
      Singh, Harvineet, Shalmali Joshi, Finale Doshi-Velez, and Himabindu Lakkaraju. "Towards Robust Off-Policy Evaluation via Human Inputs." Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (2022): 686–699.
      • 2022
      • Conference Presentation

      Towards the Unification and Robustness of Post hoc Explanation Methods

      By: Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu and Himabindu Lakkaraju
      As machine learning black boxes are increasingly being deployed in critical domains such as healthcare and criminal justice, there has been a growing emphasis on developing techniques for explaining these black boxes in a post hoc manner. In this work, we analyze two... View Details
      Keywords: AI and Machine Learning
      Citation
      Read Now
      Related
      Agarwal, Sushant, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu, and Himabindu Lakkaraju. "Towards the Unification and Robustness of Post hoc Explanation Methods." Paper presented at the 3rd Symposium on Foundations of Responsible Computing (FORC), 2022.
      • Article

      Reliable Post hoc Explanations: Modeling Uncertainty in Explainability

      By: Dylan Slack, Sophie Hilgard, Sameer Singh and Himabindu Lakkaraju
      As black box explanations are increasingly being employed to establish model credibility in high stakes settings, it is important to ensure that these explanations are accurate and reliable. However, prior work demonstrates that explanations generated by... View Details
      Keywords: Black Box Explanations; Bayesian Modeling; Decision Making; Risk and Uncertainty; Information Technology
      Citation
      Read Now
      Related
      Slack, Dylan, Sophie Hilgard, Sameer Singh, and Himabindu Lakkaraju. "Reliable Post hoc Explanations: Modeling Uncertainty in Explainability." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
      • Article

      Towards the Unification and Robustness of Perturbation and Gradient Based Explanations

      By: Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu and Himabindu Lakkaraju
      As machine learning black boxes are increasingly being deployed in critical domains such as healthcare and criminal justice, there has been a growing emphasis on developing techniques for explaining these black boxes in a post hoc manner. In this work, we analyze two... View Details
      Keywords: Machine Learning; Black Box Explanations; Decision Making; Forecasting and Prediction; Information Technology
      Citation
      Read Now
      Related
      Agarwal, Sushant, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu, and Himabindu Lakkaraju. "Towards the Unification and Robustness of Perturbation and Gradient Based Explanations." Proceedings of the International Conference on Machine Learning (ICML) 38th (2021).
      • 2021
      • Working Paper

      Population Interference in Panel Experiments

      By: Iavor I Bojinov, Kevin Wu Han and Guillaume Basse
      The phenomenon of population interference, where a treatment assigned to one experimental unit affects another experimental unit's outcome, has received considerable attention in standard randomized experiments. The complications produced by population interference in... View Details
      Keywords: Finite Population; Potential Outcomes; Dynamic Causal Effects; Mathematical Methods
      Citation
      SSRN
      Read Now
      Related
      Bojinov, Iavor I., Kevin Wu Han, and Guillaume Basse. "Population Interference in Panel Experiments." Harvard Business School Working Paper, No. 21-100, March 2021.
      • Article

      Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses

      By: Kaivalya Rawal and Himabindu Lakkaraju
      As predictive models are increasingly being deployed in high-stakes decision-making, there has been a lot of interest in developing algorithms which can provide recourses to affected individuals. While developing such tools is important, it is even more critical to... View Details
      Keywords: Predictive Models; Decision Making; Framework; Mathematical Methods
      Citation
      Read Now
      Related
      Rawal, Kaivalya, and Himabindu Lakkaraju. "Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses." Advances in Neural Information Processing Systems (NeurIPS) 33 (2020).
      • 2020
      • Working Paper

      Design and Analysis of Switchback Experiments

      By: Iavor I Bojinov, David Simchi-Levi and Jinglong Zhao
      In switchback experiments, a firm sequentially exposes an experimental unit to a random treatment, measures its response, and repeats the procedure for several periods to determine which treatment leads to the best outcome. Although practitioners have widely adopted... View Details
      Keywords: Switchback Experiments; Design; Analysis; Mathematical Methods
      Citation
      Read Now
      Related
      Bojinov, Iavor I., David Simchi-Levi, and Jinglong Zhao. "Design and Analysis of Switchback Experiments." Harvard Business School Working Paper, No. 21-034, September 2020.
      • 1
      • 2
      • →

      Are you looking for?

      →Search All HBS Web
      ǁ
      Campus Map
      Harvard Business School
      Soldiers Field
      Boston, MA 02163
      →Map & Directions
      →More Contact Information
      • Make a Gift
      • Site Map
      • Jobs
      • Harvard University
      • Trademarks
      • Policies
      • Accessibility
      • Digital Accessibility
      Copyright © President & Fellows of Harvard College.