Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (79) Arrow Down
Filter Results: (79) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (345)
    • Faculty Publications  (79)

    Show Results For

    • All HBS Web  (345)
      • Faculty Publications  (79)

      Empirical MethodsRemove Empirical Methods →

      Page 1 of 79 Results →

      Are you looking for?

      →Search All HBS Web
      • 2024
      • Working Paper

      Empirical Guidance: Data Processing and Analysis with Applications in Stata, R, and Python

      By: Melissa Ouellet and Michael W. Toffel
      This paper describes a range of best practices to compile and analyze datasets, and includes some examples in Stata, R, and Python. It is meant to serve as a reference for those getting started in econometrics, and especially those seeking to conduct data analyses in... View Details
      Keywords: Empirical Methods; Empirical Operations; Statistical Methods And Machine Learning; Statistical Interferences; Research Analysts; Analytics and Data Science; Mathematical Methods
      Citation
      SSRN
      Read Now
      Related
      Ouellet, Melissa, and Michael W. Toffel. "Empirical Guidance: Data Processing and Analysis with Applications in Stata, R, and Python." Harvard Business School Working Paper, No. 25-010, August 2024.
      • 2024
      • Working Paper

      Modest Victims: Victims Who Decline to Broadcast Their Victimization Are Seen As Morally Virtuous

      By: Nathan Dhaliwal, Jillian J. Jordan and Pat Barclay
      What do people think of victims who conceal their victimhood? We propose that the decision to not broadcast that one has been victimized serves as a costly act of modesty—in doing so, one is potentially forgoing social support and compensation from one’s community. We... View Details
      Keywords: Public Opinion; Mathematical Methods; Communication; Perception; Reputation
      Citation
      Read Now
      Related
      Dhaliwal, Nathan, Jillian J. Jordan, and Pat Barclay. "Modest Victims: Victims Who Decline to Broadcast Their Victimization Are Seen As Morally Virtuous." Working Paper, August 2024.
      • 2024
      • Working Paper

      Incrementality Representation Learning: Synergizing Past Experiments for Intervention Personalization

      By: Ta-Wei Huang, Eva Ascarza and Ayelet Israeli
      This paper introduces Incrementality Representation Learning (IRL), a novel multitask representation learning framework that predicts heterogeneous causal effects of marketing interventions. By leveraging past experiments, IRL efficiently designs and targets... View Details
      Keywords: Heterogeneous Treatment Effect; Multi-task Learning; Representation Learning; Personalization; Promotion; Deep Learning; Field Experiments; Customer Focus and Relationships; Customization and Personalization
      Citation
      SSRN
      Read Now
      Related
      Huang, Ta-Wei, Eva Ascarza, and Ayelet Israeli. "Incrementality Representation Learning: Synergizing Past Experiments for Intervention Personalization." Harvard Business School Working Paper, No. 24-076, June 2024.
      • June, 2024
      • Book Review

      Debunking Immigration Myths: A Review Essay of 'Streets of Gold: America’s Untold Story of Immigrant Success' (PublicAffairs, 2022) by Ran Abramitzky and Leah Boustan

      By: Marco Tabellini
      This essay reviews Streets of Gold: America’s Untold Story of Immigrant Success by Ran Abramitzky and Leah Boustan. This elegantly written book, highly accessible to both economists and non-economists, is a must-read for anyone interested in the topic of... View Details
      Keywords: Immigration; History; United States
      Citation
      Find at Harvard
      Purchase
      Related
      Tabellini, Marco. "Debunking Immigration Myths: A Review Essay of 'Streets of Gold: America’s Untold Story of Immigrant Success' (PublicAffairs, 2022) by Ran Abramitzky and Leah Boustan." Journal of Economic Literature 62, no. 2 (June, 2024): 739–760.
      • 2024
      • Working Paper

      The Cram Method for Efficient Simultaneous Learning and Evaluation

      By: Zeyang Jia, Kosuke Imai and Michael Lingzhi Li
      We introduce the "cram" method, a general and efficient approach to simultaneous learning and evaluation using a generic machine learning (ML) algorithm. In a single pass of batched data, the proposed method repeatedly trains an ML algorithm and tests its empirical... View Details
      Keywords: AI and Machine Learning
      Citation
      Read Now
      Related
      Jia, Zeyang, Kosuke Imai, and Michael Lingzhi Li. "The Cram Method for Efficient Simultaneous Learning and Evaluation." Working Paper, March 2024.
      • 2023
      • Working Paper

      An Experimental Design for Anytime-Valid Causal Inference on Multi-Armed Bandits

      By: Biyonka Liang and Iavor I. Bojinov
      Typically, multi-armed bandit (MAB) experiments are analyzed at the end of the study and thus require the analyst to specify a fixed sample size in advance. However, in many online learning applications, it is advantageous to continuously produce inference on the... View Details
      Keywords: Analytics and Data Science; AI and Machine Learning; Mathematical Methods
      Citation
      Read Now
      Related
      Liang, Biyonka, and Iavor I. Bojinov. "An Experimental Design for Anytime-Valid Causal Inference on Multi-Armed Bandits." Harvard Business School Working Paper, No. 24-057, March 2024.
      • 2024
      • Working Paper

      Bootstrap Diagnostics for Irregular Estimators

      By: Isaiah Andrews and Jesse M. Shapiro
      Empirical researchers frequently rely on normal approximations in order to summarize and communicate uncertainty about their findings to their scientific audience. When such approximations are unreliable, they can lead the audience to make misguided decisions. We... View Details
      Keywords: Mathematical Methods; Decision Choices and Conditions
      Citation
      Find at Harvard
      Register to Read
      Related
      Andrews, Isaiah, and Jesse M. Shapiro. "Bootstrap Diagnostics for Irregular Estimators." NBER Working Paper Series, No. 32038, January 2024.
      • 2023
      • Working Paper

      Estimating Productivity in the Presence of Spillovers: Firm-Level Evidence from the U.S. Production Network

      By: Ebehi Iyoha
      This paper examines the extent to which productivity gains are transmitted across U.S. firms through buyer-supplier relationships. Many empirical studies measure firm-to-firm spillovers using firm-level productivity estimates derived from control function approaches.... View Details
      Keywords: Supply and Industry; Partners and Partnerships; Production
      Citation
      Read Now
      Related
      Iyoha, Ebehi. "Estimating Productivity in the Presence of Spillovers: Firm-Level Evidence from the U.S. Production Network." Harvard Business School Working Paper, No. 24-033, December 2023. (Winner of the Young Economists' Essay Award at the 2021 Annual Conference of the European Association for Research in Industrial Economics (EARIE))
      • 2023
      • Article

      MoPe: Model Perturbation-based Privacy Attacks on Language Models

      By: Marvin Li, Jason Wang, Jeffrey Wang and Seth Neel
      Recent work has shown that Large Language Models (LLMs) can unintentionally leak sensitive information present in their training data. In this paper, we present Model Perturbations (MoPe), a new method to identify with high confidence if a given text is in the training... View Details
      Keywords: Large Language Model; AI and Machine Learning; Cybersecurity
      Citation
      Read Now
      Related
      Li, Marvin, Jason Wang, Jeffrey Wang, and Seth Neel. "MoPe: Model Perturbation-based Privacy Attacks on Language Models." Proceedings of the Conference on Empirical Methods in Natural Language Processing (2023): 13647–13660.
      • 2023
      • Article

      Post Hoc Explanations of Language Models Can Improve Language Models

      By: Satyapriya Krishna, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh and Himabindu Lakkaraju
      Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance... View Details
      Keywords: AI and Machine Learning; Performance Effectiveness
      Citation
      Read Now
      Related
      Krishna, Satyapriya, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh, and Himabindu Lakkaraju. "Post Hoc Explanations of Language Models Can Improve Language Models." Advances in Neural Information Processing Systems (NeurIPS) (2023).
      • 2023
      • Article

      Which Models Have Perceptually-Aligned Gradients? An Explanation via Off-Manifold Robustness

      By: Suraj Srinivas, Sebastian Bordt and Himabindu Lakkaraju
      One of the remarkable properties of robust computer vision models is that their input-gradients are often aligned with human perception, referred to in the literature as perceptually-aligned gradients (PAGs). Despite only being trained for classification, PAGs cause... View Details
      Keywords: AI and Machine Learning; Mathematical Methods
      Citation
      Read Now
      Related
      Srinivas, Suraj, Sebastian Bordt, and Himabindu Lakkaraju. "Which Models Have Perceptually-Aligned Gradients? An Explanation via Off-Manifold Robustness." Advances in Neural Information Processing Systems (NeurIPS) (2023).
      • November–December 2023
      • Article

      Iterative Coordination and Innovation: Prioritizing Value over Novelty

      By: Sourobh Ghosh and Andy Wu
      An innovating organization faces the challenge of how to prioritize distinct goals of novelty and value, both of which underlie innovation. Popular practitioner frameworks like Agile management suggest that organizations can adopt an iterative approach of frequent... View Details
      Keywords: Innovation; Novelty; Goals; Specialization; Coordination; Field Experiment; Software Development; Agile; Scrum; Iteration; Iterative; Organizations; Innovation and Invention; Value; Goals and Objectives; Integration; Applications and Software
      Citation
      Read Now
      Related
      Ghosh, Sourobh, and Andy Wu. "Iterative Coordination and Innovation: Prioritizing Value over Novelty." Organization Science 34, no. 6 (November–December 2023): 2182–2206.
      • 2023
      • Article

      On Minimizing the Impact of Dataset Shifts on Actionable Explanations

      By: Anna P. Meyer, Dan Ley, Suraj Srinivas and Himabindu Lakkaraju
      The Right to Explanation is an important regulatory principle that allows individuals to request actionable explanations for algorithmic decisions. However, several technical challenges arise when providing such actionable explanations in practice. For instance, models... View Details
      Keywords: Mathematical Methods; Analytics and Data Science
      Citation
      Read Now
      Related
      Meyer, Anna P., Dan Ley, Suraj Srinivas, and Himabindu Lakkaraju. "On Minimizing the Impact of Dataset Shifts on Actionable Explanations." Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI) 39th (2023): 1434–1444.
      • July 2023
      • Article

      Design and Analysis of Switchback Experiments

      By: Iavor I Bojinov, David Simchi-Levi and Jinglong Zhao
      In switchback experiments, a firm sequentially exposes an experimental unit to a random treatment, measures its response, and repeats the procedure for several periods to determine which treatment leads to the best outcome. Although practitioners have widely adopted... View Details
      Keywords: Switchback Experiments; Design; Analysis; Mathematical Methods
      Citation
      Find at Harvard
      Read Now
      Purchase
      Related
      Bojinov, Iavor I., David Simchi-Levi, and Jinglong Zhao. "Design and Analysis of Switchback Experiments." Management Science 69, no. 7 (July 2023): 3759–3777.
      • 2023
      • Working Paper

      Distributionally Robust Causal Inference with Observational Data

      By: Dimitris Bertsimas, Kosuke Imai and Michael Lingzhi Li
      We consider the estimation of average treatment effects in observational studies and propose a new framework of robust causal inference with unobserved confounders. Our approach is based on distributionally robust optimization and proceeds in two steps. We first... View Details
      Keywords: AI and Machine Learning; Mathematical Methods
      Citation
      Read Now
      Related
      Bertsimas, Dimitris, Kosuke Imai, and Michael Lingzhi Li. "Distributionally Robust Causal Inference with Observational Data." Working Paper, February 2023.
      • 2022
      • Article

      Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post hoc Explanations

      By: Tessa Han, Suraj Srinivas and Himabindu Lakkaraju
      A critical problem in the field of post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This... View Details
      Keywords: Mathematical Methods; Decision Choices and Conditions; Analytics and Data Science
      Citation
      Read Now
      Related
      Han, Tessa, Suraj Srinivas, and Himabindu Lakkaraju. "Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post hoc Explanations." Advances in Neural Information Processing Systems (NeurIPS) (2022). (Best Paper Award, International Conference on Machine Learning (ICML) Workshop on Interpretable ML in Healthcare.)
      • October–December 2022
      • Article

      Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem

      By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
      Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed... View Details
      Keywords: Machine Learning; Econometric Analysis; Instrumental Variable; Random Forest; Causal Inference; AI and Machine Learning; Forecasting and Prediction
      Citation
      Find at Harvard
      Register to Read
      Related
      Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." INFORMS Journal on Data Science 1, no. 2 (October–December 2022): 138–155.
      • 2022
      • Article

      Fairness via Explanation Quality: Evaluating Disparities in the Quality of Post hoc Explanations

      By: Jessica Dai, Sohini Upadhyay, Ulrich Aivodji, Stephen Bach and Himabindu Lakkaraju
      As post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to ensure that the quality of the resulting explanations is consistently high across all subgroups of a population. For instance, it... View Details
      Keywords: Prejudice and Bias; Mathematical Methods; Research; Analytics and Data Science
      Citation
      Read Now
      Purchase
      Related
      Dai, Jessica, Sohini Upadhyay, Ulrich Aivodji, Stephen Bach, and Himabindu Lakkaraju. "Fairness via Explanation Quality: Evaluating Disparities in the Quality of Post hoc Explanations." Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (2022): 203–214.
      • 2022
      • Conference Presentation

      Towards the Unification and Robustness of Post hoc Explanation Methods

      By: Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu and Himabindu Lakkaraju
      As machine learning black boxes are increasingly being deployed in critical domains such as healthcare and criminal justice, there has been a growing emphasis on developing techniques for explaining these black boxes in a post hoc manner. In this work, we analyze two... View Details
      Keywords: AI and Machine Learning
      Citation
      Read Now
      Related
      Agarwal, Sushant, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu, and Himabindu Lakkaraju. "Towards the Unification and Robustness of Post hoc Explanation Methods." Paper presented at the 3rd Symposium on Foundations of Responsible Computing (FORC), 2022.
      • May 2022
      • Article

      Coins for Bombs: The Predictive Ability of On-Chain Transfers for Terrorist Attacks

      By: Dan Amiram, Evgeny Lyandres and Daniel Rabetti
      This study examines whether we can learn from the behavior of blockchain-based transfers to predict the financing of terrorist attacks. We exploit blockchain transaction transparency to map millions of transfers for hundreds of large on-chain service providers. The... View Details
      Keywords: Blockchain; Bitcoin; Accounting; AI and Machine Learning; National Security; Governing Rules, Regulations, and Reforms
      Citation
      Read Now
      Related
      Amiram, Dan, Evgeny Lyandres, and Daniel Rabetti. "Coins for Bombs: The Predictive Ability of On-Chain Transfers for Terrorist Attacks." Journal of Accounting Research 60, no. 2 (May 2022): 427–466.
      • 1
      • 2
      • 3
      • 4
      • →

      Are you looking for?

      →Search All HBS Web
      ǁ
      Campus Map
      Harvard Business School
      Soldiers Field
      Boston, MA 02163
      →Map & Directions
      →More Contact Information
      • Make a Gift
      • Site Map
      • Jobs
      • Harvard University
      • Trademarks
      • Policies
      • Accessibility
      • Digital Accessibility
      Copyright © President & Fellows of Harvard College.