Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (6) Arrow Down
Filter Results: (6) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (12)
    • Faculty Publications  (6)

    Show Results For

    • All HBS Web  (12)
      • Faculty Publications  (6)

      Bandit ProblemsRemove Bandit Problems →

      Page 1 of 6 Results

      Are you looking for?

      →Search All HBS Web
      • 2023
      • Article

      Balancing Risk and Reward: An Automated Phased Release Strategy

      By: Yufan Li, Jialiang Mao and Iavor Bojinov
      Phased releases are a common strategy in the technology industry for gradually releasing new products or updates through a sequence of A/B tests in which the number of treated units gradually grows until full deployment or deprecation. Performing phased releases in a... View Details
      Keywords: Product Launch; Mathematical Methods; Product Development
      Citation
      Read Now
      Related
      Li, Yufan, Jialiang Mao, and Iavor Bojinov. "Balancing Risk and Reward: An Automated Phased Release Strategy." Advances in Neural Information Processing Systems (NeurIPS) (2023).
      • 2022
      • Article

      Towards Robust Off-Policy Evaluation via Human Inputs

      By: Harvineet Singh, Shalmali Joshi, Finale Doshi-Velez and Himabindu Lakkaraju
      Off-policy Evaluation (OPE) methods are crucial tools for evaluating policies in high-stakes domains such as healthcare, where direct deployment is often infeasible, unethical, or expensive. When deployment environments are expected to undergo changes (that is, dataset... View Details
      Keywords: Analytics and Data Science; Research
      Citation
      Find at Harvard
      Purchase
      Related
      Singh, Harvineet, Shalmali Joshi, Finale Doshi-Velez, and Himabindu Lakkaraju. "Towards Robust Off-Policy Evaluation via Human Inputs." Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (2022): 686–699.
      • 2021
      • Article

      Fair Algorithms for Infinite and Contextual Bandits

      By: Matthew Joseph, Michael J Kearns, Jamie Morgenstern, Seth Neel and Aaron Leon Roth
      We study fairness in linear bandit problems. Starting from the notion of meritocratic fairness introduced in Joseph et al. [2016], we carry out a more refined analysis of a more general problem, achieving better performance guarantees with fewer modelling assumptions... View Details
      Keywords: Algorithms; Bandit Problems; Fairness; Mathematical Methods
      Citation
      Read Now
      Related
      Joseph, Matthew, Michael J Kearns, Jamie Morgenstern, Seth Neel, and Aaron Leon Roth. "Fair Algorithms for Infinite and Contextual Bandits." Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society 4th (2021).
      • November–December 2018
      • Article

      Online Network Revenue Management Using Thompson Sampling

      By: Kris J. Ferreira, David Simchi-Levi and He Wang
      We consider a network revenue management problem where an online retailer aims to maximize revenue from multiple products with limited inventory constraints. As common in practice, the retailer does not know the consumer's purchase probability at each price and must... View Details
      Keywords: Online Marketing; Revenue Management; Revenue; Management; Marketing; Internet and the Web; Price; Mathematical Methods
      Citation
      Find at Harvard
      Read Now
      Related
      Ferreira, Kris J., David Simchi-Levi, and He Wang. "Online Network Revenue Management Using Thompson Sampling." Operations Research 66, no. 6 (November–December 2018): 1586–1602.
      • Article

      Mitigating Bias in Adaptive Data Gathering via Differential Privacy

      By: Seth Neel and Aaron Leon Roth
      Data that is gathered adaptively—via bandit algorithms, for example—exhibits bias. This is true both when gathering simple numeric valued data—the empirical means kept track of by stochastic bandit algorithms are biased downwards—and when gathering more complicated... View Details
      Keywords: Bandit Algorithms; Bias; Analytics and Data Science; Mathematical Methods; Theory
      Citation
      Read Now
      Related
      Neel, Seth, and Aaron Leon Roth. "Mitigating Bias in Adaptive Data Gathering via Differential Privacy." Proceedings of the International Conference on Machine Learning (ICML) 35th (2018).
      • 18 Nov 2016
      • Conference Presentation

      Rawlsian Fairness for Machine Learning

      By: Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel and Aaron Leon Roth
      Motivated by concerns that automated decision-making procedures can unintentionally lead to discriminatory behavior, we study a technical definition of fairness modeled after John Rawls' notion of "fair equality of opportunity". In the context of a simple model of... View Details
      Keywords: Machine Learning; Algorithms; Fairness; Decision Making; Mathematical Methods
      Citation
      Related
      Joseph, Matthew, Michael J. Kearns, Jamie Morgenstern, Seth Neel, and Aaron Leon Roth. "Rawlsian Fairness for Machine Learning." Paper presented at the 3rd Workshop on Fairness, Accountability, and Transparency in Machine Learning, Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), November 18, 2016.
      • 1

      Are you looking for?

      →Search All HBS Web
      ǁ
      Campus Map
      Harvard Business School
      Soldiers Field
      Boston, MA 02163
      →Map & Directions
      →More Contact Information
      • Make a Gift
      • Site Map
      • Jobs
      • Harvard University
      • Trademarks
      • Policies
      • Accessibility
      • Digital Accessibility
      Copyright © President & Fellows of Harvard College.