Filter Results:
(1,432)
Show Results For
- All HBS Web
(1,432)
- People (1)
- News (271)
- Research (903)
- Events (17)
- Multimedia (6)
- Faculty Publications (724)
Show Results For
- All HBS Web
(1,432)
- People (1)
- News (271)
- Research (903)
- Events (17)
- Multimedia (6)
- Faculty Publications (724)
- February 2019
- Case
Miroglio Fashion (A)
By: Sunil Gupta and David Lane
Francesco Cavarero, chief information officer of Miroglio Fashion, Italy’s third-largest retailer of women’s apparel, was trying to bring analytical rigor to the company’s forecasting and inventory management decisions. But fashion is inherently hard to predict. Can... View Details
Keywords: Inventory Management; Demand Forecasting; Artificial Intelligence; Machine Learning; Forecasting and Prediction; Operations; Management; Decision Making; AI and Machine Learning; Apparel and Accessories Industry; Apparel and Accessories Industry
Gupta, Sunil, and David Lane. "Miroglio Fashion (A)." Harvard Business School Case 519-053, February 2019.
- October 2018
- Case
American Family Insurance and the Artificial Intelligence Opportunity
By: Rajiv Lal and Scott Johnson
Keywords: Artificial Intelligence; Machine Learning; Automation; Analytics; American Family; American Family Insurance; Insurance; Business Organization; Transformation; Talent and Talent Management; Employee Relationship Management; Innovation Strategy; Job Cuts and Outsourcing; Risk and Uncertainty; Mobile and Wireless Technology; Technology Adoption; Internet and the Web; Applications and Software; Corporate Strategy; AI and Machine Learning; Digital Transformation; Insurance Industry; Technology Industry; Wisconsin
- April 2017
- Case
The Future of Patent Examination at the USPTO
By: Prithwiraj Choudhury, Tarun Khanna and Sarah Mehta
The U.S. Patent and Trademark Office (USPTO) is the federal government agency responsible for evaluating and granting patents and trademarks. In 2015, the USPTO employed approximately 8,000 patent examiners who granted nearly 300,000 patents to inventors. As of April... View Details
Keywords: Machine Learning; Telework; Collaborating With Unions; Human Resources; Recruitment; Retention; Intellectual Property; Copyright; Patents; Trademarks; Knowledge Sharing; Technology Adoption; Organizational Change and Adaptation; Performance Productivity; Performance Improvement; District of Columbia
Choudhury, Prithwiraj, Tarun Khanna, and Sarah Mehta. "The Future of Patent Examination at the USPTO." Harvard Business School Case 617-027, April 2017.
- 2021
- Working Paper
The Origins of CE Marking: Standards, Business, and the European Market in the 1980s–1990s
By: Grace Ballor
Many products—from consumer electronics to machinery to children’s toys—bear the CE Mark, the symbol of conformity to the ‘essential requirements’ of European standards governed by the process of CE Marking. This working paper traces the development of the system of... View Details
Keywords: Business And Government; Market Liberalization; Standards; Markets; Trade; Integration; Business History; Globalization; Business and Government Relations; Europe; European Union
Ballor, Grace. "The Origins of CE Marking: Standards, Business, and the European Market in the 1980s–1990s." Harvard Business School Working Paper, No. 21-142, June 2021.
- October 2015 (Revised October 2016)
- Case
Building Watson: Not So Elementary, My Dear! (Abridged)
By: Willy C. Shih
This case is set inside IBM Research's efforts to build a computer that can successfully take on human challengers playing the game show Jeopardy! It opens with the machine named Watson offering the incorrect answer "Toronto" to a seemingly simple question during the... View Details
Keywords: Analytics; Big Data; Business Analytics; Product Development Strategy; Machine Learning; Machine Intelligence; Artificial Intelligence; Product Development; AI and Machine Learning; Information Technology; Analytics and Data Science; Information Technology Industry; United States
Shih, Willy C. "Building Watson: Not So Elementary, My Dear! (Abridged)." Harvard Business School Case 616-025, October 2015. (Revised October 2016.)
- 2020
- Article
Humanizing Management and Innovation
By: Hirotaka Takeuchi
This article is an excerpt from The Wise Company book that Ikujiro Nonaka and I published in
October 2019 from Oxford University Press. It is a sequel to The Knowledge-Creating Company
book we published 25 years ago.
As our thinking evolved from information to... View Details
Keywords: Knowledge Creation; Knowledge Practice; Phronesis; Practical Wisdom; Ba; Continuous Innovation; Fusion Of Analog And Digital; Management As A Way Of Life; Management Style; Emotions; Innovation and Management
Takeuchi, Hirotaka. "Humanizing Management and Innovation." Kindai Management Review 8 (2020): 20–29.
- April 2014 (Revised March 2015)
- Case
GE and the Industrial Internet
By: Karim R. Lakhani, Marco Iansiti and Kerry Herman
CEO Jeff Immelt considers whether GE is moving fast enough on its new Industrial Internet initiative. The undertaking includes building out an Industrial Internet, connecting machines and devices, collecting their data and operations, and providing services to clients... View Details
Keywords: Technology; Operations Management; Strategy; Big Data; Business Analysis; Corporate Strategy; Digital Technology; Digital Innovation; General Management; General Strategy; Global Competitiveness; Global Strategy; Innovation; Innovation And Management; Industrial Internet; GE; Innovation and Invention; Information Technology; Analytics and Data Science; Medical Devices and Supplies Industry; Medical Devices and Supplies Industry; Medical Devices and Supplies Industry; Medical Devices and Supplies Industry; Medical Devices and Supplies Industry; Medical Devices and Supplies Industry; Medical Devices and Supplies Industry; Medical Devices and Supplies Industry; Medical Devices and Supplies Industry; Medical Devices and Supplies Industry; North and Central America; Asia; Europe; Middle East; Latin America
Lakhani, Karim R., Marco Iansiti, and Kerry Herman. "GE and the Industrial Internet." Harvard Business School Case 614-032, April 2014. (Revised March 2015.)
- Research Summary
Overview
I develop machine learning tools and techniques which enable human decision makers to make better decisions. More specifically, my research addresses the following fundamental questions pertaining to human and algorithmic decision-making:
1. How to build... View Details
1. How to build... View Details
- Mar 2020
- Conference Presentation
A New Analysis of Differential Privacy's Generalization Guarantees
By: Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi and Moshe Shenfeld
We give a new proof of the "transfer theorem" underlying adaptive data analysis: that any mechanism for answering adaptively chosen statistical queries that is differentially private and sample-accurate is also accurate out-of-sample. Our new proof is elementary and... View Details
Jung, Christopher, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe Shenfeld. "A New Analysis of Differential Privacy's Generalization Guarantees." Paper presented at the 11th Innovations in Theoretical Computer Science Conference, Seattle, March 2020.
- April 2024
- Article
Detecting Routines: Applications to Ridesharing CRM
By: Ryan Dew, Eva Ascarza, Oded Netzer and Nachum Sicherman
Routines shape many aspects of day-to-day consumption. While prior work has established the importance of habits in consumer behavior, little work has been done to understand the implications of routines—which we define as repeated behaviors with recurring, temporal... View Details
Keywords: Ride-sharing; Routine; Machine Learning; Customer Relationship Management; Consumer Behavior; Segmentation
Dew, Ryan, Eva Ascarza, Oded Netzer, and Nachum Sicherman. "Detecting Routines: Applications to Ridesharing CRM." Journal of Marketing Research (JMR) 61, no. 2 (April 2024): 368–392.
- October 2023
- Article
Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA
By: Matthew S. Johnson, David I. Levine and Michael W. Toffel
We study how a regulator can best target inspections. Our case study is a U.S. Occupational Safety and Health Administration (OSHA) program that randomly allocated some inspections. On average, each inspection averted 2.4 serious injuries (9%) over the next five years.... View Details
Keywords: Safety Regulations; Regulations; Regulatory Enforcement; Machine Learning Models; Safety; Operations; Service Operations; Production; Forecasting and Prediction; Decisions; United States
Johnson, Matthew S., David I. Levine, and Michael W. Toffel. "Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA." American Economic Journal: Applied Economics 15, no. 4 (October 2023): 30–67. (Profiled in the Regulatory Review.)
- Forthcoming
- Article
Serving with a Smile on Airbnb: Analyzing the Economic Returns and Behavioral Underpinnings of the Host’s Smile
By: Shunyuan Zhang, Elizabeth Friedman, Kannan Srinivasan, Ravi Dhar and Xupin Zhang
Non-informational cues, such as facial expressions, can significantly influence judgments and interpersonal impressions. While past research has explored how smiling affects business outcomes in offline or in-store contexts, relatively less is known about how smiling... View Details
Keywords: Sharing Economy; Airbnb; Image Feature Extraction; Machine Learning; Facial Expressions; Prejudice and Bias; Nonverbal Communication; E-commerce; Consumer Behavior; Perception
Zhang, Shunyuan, Elizabeth Friedman, Kannan Srinivasan, Ravi Dhar, and Xupin Zhang. "Serving with a Smile on Airbnb: Analyzing the Economic Returns and Behavioral Underpinnings of the Host’s Smile." Journal of Consumer Research (forthcoming). (Pre-published online August 9, 2024.)
- 2021
- Conference Presentation
An Algorithmic Framework for Fairness Elicitation
By: Christopher Jung, Michael J. Kearns, Seth Neel, Aaron Leon Roth, Logan Stapleton and Zhiwei Steven Wu
We consider settings in which the right notion of fairness is not captured by simple mathematical definitions (such as equality of error rates across groups), but might be more complex and nuanced and thus require elicitation from individual or collective stakeholders.... View Details
Jung, Christopher, Michael J. Kearns, Seth Neel, Aaron Leon Roth, Logan Stapleton, and Zhiwei Steven Wu. "An Algorithmic Framework for Fairness Elicitation." Paper presented at the 2nd Symposium on Foundations of Responsible Computing (FORC), 2021.
- December 1, 2021
- Article
Do You Know How Your Teams Get Work Done?
By: Rohan Narayana Murty, Rajath B. Das, Scott Duke Kominers, Arjun Narayan, Suraj Srinivasan, Tarun Khanna and Kartik Hosanagar
In a research study at four Fortune 500 companies, when managers were asked about their teams’ work, on average they either did not know or could not remember 60% of the work their teams do. This is a major problem because it can lead to unrealistic digital... View Details
Keywords: Leading Teams; Work Recall Gap; Machine Learning; Algorithms; Groups and Teams; Management; Technological Innovation
Murty, Rohan Narayana, Rajath B. Das, Scott Duke Kominers, Arjun Narayan, Suraj Srinivasan, Tarun Khanna, and Kartik Hosanagar. "Do You Know How Your Teams Get Work Done?" Harvard Business Review Digital Articles (December 1, 2021).
- 14 Aug 2017
- Conference Presentation
A Convex Framework for Fair Regression
By: Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel and Aaron Roth
We introduce a flexible family of fairness regularizers for (linear and logistic) regression problems. These regularizers all enjoy convexity, permitting fast optimization, and they span the range from notions of group fairness to strong individual fairness. By varying... View Details
Berk, Richard, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel, and Aaron Roth. "A Convex Framework for Fair Regression." Paper presented at the 4th Workshop on Fairness, Accountability, and Transparency in Machine Learning, Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), August 14, 2017.
- 2020
- Article
Public Sentiment and the Price of Corporate Sustainability
By: George Serafeim
Combining corporate sustainability performance scores based on environmental, social, and governance (ESG) data with big data measuring public sentiment about a company’s sustainability performance, I find that the valuation premium paid for companies with strong... View Details
Keywords: Sustainability; ESG; ESG (Environmental, Social, Governance) Performance; Investment Management; Investment Strategy; Big Data; Machine Learning; Environment; Environmental Sustainability; Corporate Governance; Performance; Asset Pricing; Investment; Management; Strategy; Human Capital; Public Opinion; Value; Analytics and Data Science
Serafeim, George. "Public Sentiment and the Price of Corporate Sustainability." Financial Analysts Journal 76, no. 2 (2020): 26–46.
- January 2024 (Revised January 2025)
- Case
Huawei: Resilience amid Autarky and Adversity
By: William C. Kirby and Daniel Fu
In September 2023, Huawei made a dramatic return to the global smartphone space with the launch of its Mate 60 Pro smartphone, equipped with an indigenously designed, 7nm chip. This came despite a myriad of export controls and restrictions imposed against the company... View Details
Keywords: International Strategy; Semiconductors; Smartphone; Government And Politics; Government And Business; Digital Infrastructure; 5G; Political Risk; Business and Government Relations; Global Strategy; Multinational Firms and Management; Governing Rules, Regulations, and Reforms; AI and Machine Learning; Mobile and Wireless Technology; Leadership; Retirement; Corporate Strategy; Technology Industry; China; United States; Europe; Asia; Middle East
- Article
Oracle Efficient Private Non-Convex Optimization
By: Seth Neel, Aaron Leon Roth, Giuseppe Vietri and Zhiwei Steven Wu
One of the most effective algorithms for differentially private learning and optimization is objective perturbation. This technique augments a given optimization problem (e.g. deriving from an ERM problem) with a random linear term, and then exactly solves it.... View Details
Neel, Seth, Aaron Leon Roth, Giuseppe Vietri, and Zhiwei Steven Wu. "Oracle Efficient Private Non-Convex Optimization." Proceedings of the International Conference on Machine Learning (ICML) 37th (2020).
- Teaching Interest
Empirical Technology and Operations Management Course
I taught a set of lectures on "Introduction to Machine Learning for Social Scientists" as part of this required course for first year PhD students. This module familiarizes students with all the basic concepts in machine learning, their implementations, as well as the... View Details
- Article
Counterfactual Explanations Can Be Manipulated
By: Dylan Slack, Sophie Hilgard, Himabindu Lakkaraju and Sameer Singh
Counterfactual explanations are useful for both generating recourse and auditing fairness between groups. We seek to understand whether adversaries can manipulate counterfactual explanations in an algorithmic recourse setting: if counterfactual explanations indicate... View Details
Slack, Dylan, Sophie Hilgard, Himabindu Lakkaraju, and Sameer Singh. "Counterfactual Explanations Can Be Manipulated." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).