Filter Results:
(1,260)
Show Results For
- All HBS Web
(4,043)
- Faculty Publications (1,260)
Show Results For
- All HBS Web
(4,043)
- Faculty Publications (1,260)
- 2023
- Working Paper
The Optimal Stock Valuation Ratio
By: Sebastian Hillenbrand and Odhrain McCarthy
Trailing price ratios, such as the price-dividend and the price-earnings ratio, scale prices by trailing cash flow measures. They theoretically contain expected returns, yet, their performance in predicting stock market returns is poor. This is because of an omitted... View Details
Keywords: Price; Investment Return; AI and Machine Learning; Valuation; Cash Flow; Forecasting and Prediction
Hillenbrand, Sebastian, and Odhrain McCarthy. "The Optimal Stock Valuation Ratio." Working Paper, November 2023.
- October 2023
- Teaching Note
Timnit Gebru: 'SILENCED No More' on AI Bias and The Harms of Large Language Models
By: Tsedal Neeley and Tim Englehart
Teaching Note for HBS Case No. 422-085. Dr. Timnit Gebru—a leading artificial intelligence (AI) computer scientist and co-lead of Google’s Ethical AI team—was messaging with one of her colleagues when she saw the words: “Did you resign?? Megan sent an email saying that... View Details
- October 2023 (Revised June 2024)
- Case
ReUp Education: Can AI Help Learners Return to College?
By: Kris Ferreira, Christopher Thomas Ryan and Sarah Mehta
Founded in 2015, ReUp Education helps “stopped out students”—learners who have stopped making progress towards graduation—achieve their college completion goals. The company relies on a team of success coaches to engage with learners and help them reenroll. In 2019,... View Details
Keywords: AI; Algorithms; Machine Learning; Edtech; Education Technology; Analysis; Higher Education; AI and Machine Learning; Customization and Personalization; Failure; Education Industry; Technology Industry; United States
Ferreira, Kris, Christopher Thomas Ryan, and Sarah Mehta. "ReUp Education: Can AI Help Learners Return to College?" Harvard Business School Case 624-007, October 2023. (Revised June 2024.)
- October 2023 (Revised January 2024)
- Case
Ball: EVA Driving the World's Leading Can Manufacturer (A)
By: Jonas Heese and Susan Pinckney
The case describes Ball’s multi decade history of using Economic Value Added to drive decision making and workforce compensation. In 2016, the company acquired Rexam PLC and became the world’s leading metal beverage container company. Consumer demand for varied... View Details
Keywords: Budgets and Budgeting; Cost Accounting; Financial Reporting; Financial Statements; Buildings and Facilities; Green Building; Mergers and Acquisitions; Customer Satisfaction; Decisions; Forecasting and Prediction; Machinery and Machining; Asset Pricing; Corporate Finance; Capital; Cost; Financial Management; Goods and Commodities; Compensation and Benefits; Executive Compensation; Employee Relationship Management; Goals and Objectives; Resource Allocation; Business Strategy; Corporate Strategy; Food and Beverage Industry; United States; Arizona; California; Texas
Heese, Jonas, and Susan Pinckney. "Ball: EVA Driving the World's Leading Can Manufacturer (A)." Harvard Business School Case 124-002, October 2023. (Revised January 2024.)
- 2023
- Working Paper
Deglobalization and Entrepreneurial Investment: The Natural Experiment of Brexit
By: Elisa Alvarez-Garrido and Juan Alcácer
We seek to gain insight into the consequences of deglobalization on entrepreneurial investment by
analyzing an instance of economic disintegration: the United Kingdom’s exit from the European Union.
Brexit is not only a unique empirical opportunity, a natural... View Details
Keywords: Entrepreneurial Finance; International Relations; Trade; Disruption; Globalized Economies and Regions; United Kingdom
Alvarez-Garrido, Elisa, and Juan Alcácer. "Deglobalization and Entrepreneurial Investment: The Natural Experiment of Brexit." Harvard Business School Working Paper, No. 24-017, August 2023.
- October 2023
- Case
Fixie and Conversational AI Sidekicks
By: Jeffrey J. Bussgang and Carin-Isabel Knoop
In March 2023, Fixie Co-Founder and Chief Architect Matt Welsh and co-founders had the kind of meeting no founders want to have. The president of leading artificial intelligence (AI) research and deployment firm OpenAI, which had catapulted into fame with its ChatGPT... View Details
Keywords: Large Language Model; Entrepreneurship; Decision Choices and Conditions; AI and Machine Learning; Technological Innovation; Competitive Strategy; Technology Industry; United States
Bussgang, Jeffrey J., and Carin-Isabel Knoop. "Fixie and Conversational AI Sidekicks." Harvard Business School Case 824-037, October 2023.
- October 2023 (Revised February 2024)
- Case
Loris
By: Shunyuan Zhang, Das Narayandas, Stacy Straaberg and David Lane
In December 2022, Loris’s executive team considered their go-to-market strategy. Loris was an artificial intelligence (AI) software startup for the customer service industry with two products on the market: 1) Agent Assist which provided customer service agents (CSAs)... View Details
- 2023
- Working Paper
Black-box Training Data Identification in GANs via Detector Networks
By: Lukman Olagoke, Salil Vadhan and Seth Neel
Since their inception Generative Adversarial Networks (GANs) have been popular generative models across images, audio, video, and tabular data. In this paper we study whether given access to a trained GAN, as well as fresh samples from the underlying distribution, if... View Details
Olagoke, Lukman, Salil Vadhan, and Seth Neel. "Black-box Training Data Identification in GANs via Detector Networks." Working Paper, October 2023.
- October 2023
- Article
Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA
By: Matthew S. Johnson, David I. Levine and Michael W. Toffel
We study how a regulator can best target inspections. Our case study is a U.S. Occupational Safety and Health Administration (OSHA) program that randomly allocated some inspections. On average, each inspection averted 2.4 serious injuries (9%) over the next five years.... View Details
Keywords: Safety Regulations; Regulations; Regulatory Enforcement; Machine Learning Models; Safety; Operations; Service Operations; Production; Forecasting and Prediction; Decisions; United States
Johnson, Matthew S., David I. Levine, and Michael W. Toffel. "Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA." American Economic Journal: Applied Economics 15, no. 4 (October 2023): 30–67. (Profiled in the Regulatory Review.)
- 2023
- Working Paper
In-Context Unlearning: Language Models as Few Shot Unlearners
By: Martin Pawelczyk, Seth Neel and Himabindu Lakkaraju
Machine unlearning, the study of efficiently removing the impact of specific training points on the
trained model, has garnered increased attention of late, driven by the need to comply with privacy
regulations like the Right to be Forgotten. Although unlearning is... View Details
Pawelczyk, Martin, Seth Neel, and Himabindu Lakkaraju. "In-Context Unlearning: Language Models as Few Shot Unlearners." Working Paper, October 2023.
- 2023
- Working Paper
The Customer Journey as a Source of Information
By: Nicolas Padilla, Eva Ascarza and Oded Netzer
In the face of heightened data privacy concerns and diminishing third-party data access,
firms are placing increased emphasis on first-party data (1PD) for marketing decisions.
However, in environments with infrequent purchases, reliance on past purchases 1PD... View Details
Keywords: Customer Journey; Privacy; Consumer Behavior; Analytics and Data Science; AI and Machine Learning; Customer Focus and Relationships
Padilla, Nicolas, Eva Ascarza, and Oded Netzer. "The Customer Journey as a Source of Information." Harvard Business School Working Paper, No. 24-035, October 2023. (Revised October 2023.)
- 2025
- Working Paper
The Impact of Input Inaccuracy on Leveraging AI Tools: Evidence from Algorithmic Labor Scheduling
By: Caleb Kwon, Antonio Moreno and Ananth Raman
Are the inputs used by your AI tool correct and up to date? In this paper, we show that the answer to this question: (i) is frequently a “no” in real business contexts, and (ii) has significant implications on the performance of AI tools. In the context of algorithmic... View Details
Kwon, Caleb, Antonio Moreno, and Ananth Raman. "The Impact of Input Inaccuracy on Leveraging AI Tools: Evidence from Algorithmic Labor Scheduling." Working Paper, 2025.
- 2023
- Working Paper
Trusting Talent: Cross-Country Differences in Hiring
By: Letian Zhang and Shinan Wang
This article argues that a society’s social trust influences employers’ hiring strategies. In selecting workers, employers could either focus on applicants’ potential and select on foundational skills (e.g., social skills, math skills) or focus on their readiness and... View Details
Keywords: Selection and Staffing; Trust; Competency and Skills; Cross-Cultural and Cross-Border Issues; European Union
Zhang, Letian, and Shinan Wang. "Trusting Talent: Cross-Country Differences in Hiring." Working Paper, October 2023.
- September 29, 2023
- Article
Eliminating Algorithmic Bias Is Just the Beginning of Equitable AI
By: Simon Friis and James Riley
When it comes to artificial intelligence and inequality, algorithmic bias rightly receives a lot of attention. But it’s just one way that AI can lead to inequitable outcomes. To truly create equitable AI, we need to consider three forces through which it might make... View Details
Friis, Simon, and James Riley. "Eliminating Algorithmic Bias Is Just the Beginning of Equitable AI." Harvard Business Review (website) (September 29, 2023).
- September 2023
- Case
Ada: Cultivating Investors
By: Reza Satchu and Patrick Sanguineti
Mike Murchison, co-founder and CEO of Ada, has an enviable dilemma. Launched in 2016 by Murchison and his co-founder David Hariri, Ada is an AI-native company that aims to revolutionize how businesses approach customer service. The company has already attracted a buzz,... View Details
Keywords: Founder; Fundraising; Business Startups; Decisions; Entrepreneurship; Venture Capital; AI and Machine Learning; Technology Industry
Satchu, Reza, and Patrick Sanguineti. "Ada: Cultivating Investors." Harvard Business School Case 824-090, September 2023.
- 2023
- Working Paper
Navigating the Jagged Technological Frontier: Field Experimental Evidence of the Effects of AI on Knowledge Worker Productivity and Quality
By: Fabrizio Dell'Acqua, Edward McFowland III, Ethan Mollick, Hila Lifshitz-Assaf, Katherine C. Kellogg, Saran Rajendran, Lisa Krayer, François Candelon and Karim R. Lakhani
The public release of Large Language Models (LLMs) has sparked tremendous interest in how humans will use Artificial Intelligence (AI) to accomplish a variety of tasks. In our study conducted with Boston Consulting Group, a global management consulting firm, we examine... View Details
Keywords: Large Language Model; AI and Machine Learning; Performance Efficiency; Performance Improvement
Dell'Acqua, Fabrizio, Edward McFowland III, Ethan Mollick, Hila Lifshitz-Assaf, Katherine C. Kellogg, Saran Rajendran, Lisa Krayer, François Candelon, and Karim R. Lakhani. "Navigating the Jagged Technological Frontier: Field Experimental Evidence of the Effects of AI on Knowledge Worker Productivity and Quality." Harvard Business School Working Paper, No. 24-013, September 2023.
- September 2023 (Revised January 2024)
- Case
AI21 Labs in 2023: Strategy for Generative AI
By: David Yoffie, Orna Dan and Elena Corsi
Israeli generative artificial intelligence company AI21 Labs was founded in 2017 to realize the vision of true machine intelligence. It sought to reinvent writing and reading and in 2020 it launched Wordtune, an app using GenAI software to offer alternate text... View Details
Keywords: Decision Making; AI and Machine Learning; Innovation Strategy; Growth and Development Strategy; Applications and Software; Competitive Strategy; Technology Industry; Israel
Yoffie, David, Orna Dan, and Elena Corsi. "AI21 Labs in 2023: Strategy for Generative AI." Harvard Business School Case 724-383, September 2023. (Revised January 2024.)
- September 2023 (Revised April 2024)
- Case
Atomwise: Strategic Opportunities in AI for Pharma
By: Satish Tadikonda
Abraham Heifets and his co-founder, Izhar Wallach, had founded Atomwise to develop i) an AI engine to transform drug discovery by creating better medicines faster, and ii) a machine learning-based discovery engine that combined the power of convolutional neural... View Details
Keywords: Business Model; Business Startups; AI and Machine Learning; Science-Based Business; Technological Innovation; Biotechnology Industry; Pharmaceutical Industry
Tadikonda, Satish. "Atomwise: Strategic Opportunities in AI for Pharma." Harvard Business School Case 824-043, September 2023. (Revised April 2024.)
- September 2023
- Case
Super Quantum: Using Artificial Intelligence to Transform Asset Management (A)
By: Feng Zhu and Kerry Herman
Dr. Zhang, CEO of Super Quantum, an AI-driven hedge fund, is considering an investor’s request to withdraw their funds as the markets experience volatility. Should he pull the investor’s funds? View Details
Keywords: AI and Machine Learning; Volatility; Financial Markets; Investment Funds; Decision Choices and Conditions; Financial Services Industry
Zhu, Feng, and Kerry Herman. "Super Quantum: Using Artificial Intelligence to Transform Asset Management (A)." Harvard Business School Case 624-027, September 2023.
- September 2023
- Article
A Pull versus Push Framework for Reputation
Reputation is a powerful driver of human behavior. Reputation systems incentivize 'actors' to take reputation-enhancing actions, and 'evaluators' to reward actors with positive reputations by preferentially cooperating with them. This article proposes a reputation... View Details
Jordan, Jillian J. "A Pull versus Push Framework for Reputation." Trends in Cognitive Sciences 27, no. 9 (September 2023): 852–866.