Filter Results:
(382)
Show Results For
- All HBS Web
(1,027)
- Faculty Publications (382)
Show Results For
- All HBS Web
(1,027)
- Faculty Publications (382)
- September–October 2023
- Article
Reskilling in the Age of AI
In the coming decades, as the pace of technological change continues to increase, millions of workers may need to be not just upskilled but reskilled—a profoundly complex societal challenge that will sometimes require workers to both acquire new skills and... View Details
Keywords: Competency and Skills; AI and Machine Learning; Training; Adaptation; Employees; Digital Transformation
Tamayo, Jorge, Leila Doumi, Sagar Goel, Orsolya Kovács-Ondrejkovic, and Raffaella Sadun. "Reskilling in the Age of AI." Harvard Business Review 101, no. 5 (September–October 2023): 56–65.
- 2024
- Working Paper
The Crowdless Future? Generative AI and Creative Problem Solving
The rapid advances in generative artificial intelligence (AI) open up attractive opportunities for creative problem-solving through human-guided AI partnerships. To explore this potential, we initiated a crowdsourcing challenge focused on sustainable, circular economy... View Details
Keywords: Large Language Models; Crowdsourcing; Generative Ai; Creative Problem-solving; Organizational Search; AI-in-the-loop; Prompt Engineering; AI and Machine Learning; Innovation and Invention
Boussioux, Léonard, Jacqueline N. Lane, Miaomiao Zhang, Vladimir Jacimovic, and Karim R. Lakhani. "The Crowdless Future? Generative AI and Creative Problem Solving." Harvard Business School Working Paper, No. 24-005, July 2023. (Revised July 2024.)
- August 2023
- Article
Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel
By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet models have become more complex and harder to understand. To understand complex models, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use... View Details
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel." Nature Machine Intelligence 5, no. 8 (August 2023): 873–883.
- 2023
- Article
Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten
By: Himabindu Lakkaraju, Satyapriya Krishna and Jiaqi Ma
The Right to Explanation and the Right to be Forgotten are two important principles outlined to regulate algorithmic decision making and data usage in real-world applications. While the right to explanation allows individuals to request an actionable explanation for an... View Details
Keywords: Analytics and Data Science; AI and Machine Learning; Decision Making; Governing Rules, Regulations, and Reforms
Lakkaraju, Himabindu, Satyapriya Krishna, and Jiaqi Ma. "Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten." Proceedings of the International Conference on Machine Learning (ICML) 40th (2023): 17808–17826.
- 2023
- Working Paper
Beyond the Hype: Unveiling the Marginal Benefits of 3D Virtual Tours in Real Estate
By: Mengxia Zhang and Isamar Troncoso
3D virtual tours (VTs) have become a popular digital tool in real estate platforms, enabling potential buyers to virtually walk through the houses they search for online. In this paper, we study home sellers’ adoption of VTs and the VTs’ relative benefits compared to... View Details
Zhang, Mengxia, and Isamar Troncoso. "Beyond the Hype: Unveiling the Marginal Benefits of 3D Virtual Tours in Real Estate." Harvard Business School Working Paper, No. 24-003, July 2023.
- July 2023
- Supplement
Honeycomb (B): Jumping on The Generative AI Bandwagon?
By: Jeffrey J. Bussgang and Kumba Sennaar
Honeycomb, an audio app enabling users to record stories and save family memories, considers pivoting to embrace generative AI. What should the co-founders business model look like if they pursued this new direction? View Details
- July 2023 (Revised October 2024)
- Case
Revenue Recognition at Stride Funding: Making Sense of Revenues for a Fintech Startup
By: Paul M. Healy and Jung Koo Kang
The case explores the challenges of revenue recognition and financial reporting for Stride Funding (Stride), a fintech startup that has disrupted the student loan market. Stride leveraged proprietary machine learning and financial models to underwrite alternative... View Details
Keywords: Revenue Recognition; Financial Reporting; Entrepreneurial Finance; Business Startups; Growth and Development Strategy; Governance Compliance; Accrual Accounting; Financial Services Industry; United States
Healy, Paul M., and Jung Koo Kang. "Revenue Recognition at Stride Funding: Making Sense of Revenues for a Fintech Startup." Harvard Business School Case 124-015, July 2023. (Revised October 2024.)
- July 2023
- Case
DayTwo: Going to Market with Gut Microbiome (Abridged)
By: Ayelet Israeli
DayTwo is a young Israeli startup that applies research on the gut microbiome and machine learning algorithms to deliver personalized nutritional recommendations to its users in order to minimize blood sugar spikes after meals. After a first year of trial rollout in... View Details
Keywords: Business Startups; AI and Machine Learning; Nutrition; Market Entry and Exit; Product Marketing; Distribution Channels
Israeli, Ayelet. "DayTwo: Going to Market with Gut Microbiome (Abridged)." Harvard Business School Case 524-015, July 2023.
- July 2023 (Revised July 2023)
- Background Note
Generative AI Value Chain
By: Andy Wu and Matt Higgins
Generative AI refers to a type of artificial intelligence (AI) that can create new content (e.g., text, image, or audio) in response to a prompt from a user. ChatGPT, Bard, and Claude are examples of text generating AIs, and DALL-E, Midjourney, and Stable Diffusion are... View Details
Keywords: AI; Artificial Intelligence; Model; Hardware; Data Centers; AI and Machine Learning; Applications and Software; Analytics and Data Science; Value
Wu, Andy, and Matt Higgins. "Generative AI Value Chain." Harvard Business School Background Note 724-355, July 2023. (Revised July 2023.)
- June 2023 (Revised July 2023)
- Case
Social Media Background Screening at Fama Technologies
By: Joseph Pacelli, Jillian Grennan and Alexis Lefort
Fama Technologies is an online screening company that uses AI to analyze job applicants' publicly available online content for signs of risk and culture fit. The case opens with Ben Mones, founder and CEO, looking to secure funding from venture firms. He is running... View Details
Keywords: Human Resources; Recruitment; Retention; Selection and Staffing; Organizational Culture; Talent and Talent Management; AI and Machine Learning; Social Media; Venture Capital; Entrepreneurship; United States
Pacelli, Joseph, Jillian Grennan, and Alexis Lefort. "Social Media Background Screening at Fama Technologies." Harvard Business School Case 123-010, June 2023. (Revised July 2023.)
- June 20, 2023
- Article
Cautious Adoption of AI Can Create Positive Company Culture
By: Joseph Pacelli and Jonas Heese
Pacelli, Joseph, and Jonas Heese. "Cautious Adoption of AI Can Create Positive Company Culture." CMR Insights (June 20, 2023).
- 2023
- Working Paper
Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness
By: Neil Menghani, Edward McFowland III and Daniel B. Neill
In this paper, we develop a new criterion, "insufficiently justified disparate impact" (IJDI), for assessing whether recommendations (binarized predictions) made by an algorithmic decision support tool are fair. Our novel, utility-based IJDI criterion evaluates false... View Details
Menghani, Neil, Edward McFowland III, and Daniel B. Neill. "Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness." Working Paper, June 2023.
- June 19, 2023
- Article
Should You Start a Generative AI Company?
Many entrepreneurs are considering starting companies that leverage the latest generative AI technology, but they must ask themselves whether they have what it takes to compete on increasingly commoditized foundational models, or whether they should instead... View Details
De Freitas, Julian. "Should You Start a Generative AI Company?" Harvard Business Review (website) (June 19, 2023).
- June 12, 2023
- Article
How AI Will Accelerate the Circular Economy
By: Shirley Lu and George Serafeim
Despite living on a planet with finite resources, our economy remains largely linear and full of single-use products. The shift toward a circular economy, where companies recover or recycle resources, has hit roadblocks, including low value of used products and high... View Details
Keywords: Recycling; Materials Management; Innovation and Management; Technological Innovation; Climate Change; Environmental Sustainability; AI and Machine Learning; Operations; Industrial Products Industry; Consumer Products Industry; Technology Industry
Lu, Shirley, and George Serafeim. "How AI Will Accelerate the Circular Economy." Harvard Business Review Digital Articles (June 12, 2023).
- 2023
- Working Paper
Auditing Predictive Models for Intersectional Biases
By: Kate S. Boxer, Edward McFowland III and Daniel B. Neill
Predictive models that satisfy group fairness criteria in aggregate for members of a protected class, but do not guarantee subgroup fairness, could produce biased predictions for individuals at the intersection of two or more protected classes. To address this risk, we... View Details
Boxer, Kate S., Edward McFowland III, and Daniel B. Neill. "Auditing Predictive Models for Intersectional Biases." Working Paper, June 2023.
- 2023
- Working Paper
Digital Lending and Financial Well-Being: Through the Lens of Mobile Phone Data
By: AJ Chen, Omri Even-Tov, Jung Koo Kang and Regina Wittenberg-Moerman
To mitigate information asymmetry about borrowers in developing economies, digital lenders utilize machine-learning algorithms and nontraditional data from borrowers’ mobile devices. Consequently, digital lenders have managed to expand access to credit for millions of... View Details
Keywords: Borrowing and Debt; Credit; AI and Machine Learning; Welfare; Well-being; Developing Countries and Economies; Equality and Inequality
Chen, AJ, Omri Even-Tov, Jung Koo Kang, and Regina Wittenberg-Moerman. "Digital Lending and Financial Well-Being: Through the Lens of Mobile Phone Data." Harvard Business School Working Paper, No. 23-076, April 2023. (Revised November 2023. SSRN Working Paper Series, November 2023)
- 2023
- Article
Provable Detection of Propagating Sampling Bias in Prediction Models
By: Pavan Ravishankar, Qingyu Mo, Edward McFowland III and Daniel B. Neill
With an increased focus on incorporating fairness in machine learning models, it becomes imperative not only to assess and mitigate bias at each stage of the machine learning pipeline but also to understand the downstream impacts of bias across stages. Here we consider... View Details
Ravishankar, Pavan, Qingyu Mo, Edward McFowland III, and Daniel B. Neill. "Provable Detection of Propagating Sampling Bias in Prediction Models." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 8 (2023): 9562–9569. (Presented at the 37th AAAI Conference on Artificial Intelligence (2/7/23-2/14/23) in Washington, DC.)
- June 2023
- Article
When Does Uncertainty Matter? Understanding the Impact of Predictive Uncertainty in ML Assisted Decision Making
By: Sean McGrath, Parth Mehta, Alexandra Zytek, Isaac Lage and Himabindu Lakkaraju
As machine learning (ML) models are increasingly being employed to assist human decision
makers, it becomes critical to provide these decision makers with relevant inputs which can
help them decide if and how to incorporate model predictions into their decision... View Details
McGrath, Sean, Parth Mehta, Alexandra Zytek, Isaac Lage, and Himabindu Lakkaraju. "When Does Uncertainty Matter? Understanding the Impact of Predictive Uncertainty in ML Assisted Decision Making." Transactions on Machine Learning Research (TMLR) (June 2023).
- 2023
- Article
Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators
By: Benjamin Jakubowski, Siram Somanchi, Edward McFowland III and Daniel B. Neill
Regression discontinuity (RD) designs are widely used to estimate causal effects in the absence of a randomized experiment. However, standard approaches to RD analysis face two significant limitations. First, they require a priori knowledge of discontinuities in... View Details
Jakubowski, Benjamin, Siram Somanchi, Edward McFowland III, and Daniel B. Neill. "Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators." Journal of Machine Learning Research 24, no. 133 (2023): 1–57.
- May 9, 2023
- Article
8 Questions About Using AI Responsibly, Answered
By: Tsedal Neeley
Generative AI tools are poised to change the way every business operates. As your own organization begins strategizing which to use, and how, operational and ethical considerations are inevitable. This article delves into eight of them, including how your organization... View Details
Neeley, Tsedal. "8 Questions About Using AI Responsibly, Answered." Harvard Business Review (website) (May 9, 2023).