Filter Results:
(1,260)
Show Results For
- All HBS Web
(4,043)
- Faculty Publications (1,260)
Show Results For
- All HBS Web
(4,043)
- Faculty Publications (1,260)
- 2023
- Book
Beyond AI: ChatGPT, Web3, and the Business Landscape of Tomorrow
By: Ken Huang, Yang Wang, Feng Zhu, Xi Chen and Chunxiao Xing
This book explores the transformative potential of ChatGPT, Web3, and their impact on productivity and various industries. It delves into Generative AI (GenAI) and its representative platform ChatGPT, their synergy with Web3, and how they can revolutionize business... View Details
Huang, Ken, Yang Wang, Feng Zhu, Xi Chen, and Chunxiao Xing, eds. Beyond AI: ChatGPT, Web3, and the Business Landscape of Tomorrow. Springer, 2023.
- December 2023
- Article
Discerning Saints: Moralization of Intrinsic Motivation and Selective Prosociality at Work
By: Mijeong Kwon, Julia Lee Cunningham and Jon M. Jachimowicz
Intrinsic motivation has received widespread attention as a predictor of positive work outcomes, including employees’ prosocial behavior. In the current research, we offer a more nuanced view by proposing that intrinsic motivation does not uniformly increase prosocial... View Details
Kwon, Mijeong, Julia Lee Cunningham, and Jon M. Jachimowicz. "Discerning Saints: Moralization of Intrinsic Motivation and Selective Prosociality at Work." Academy of Management Journal 66, no. 6 (December 2023): 1625–1650.
- December 2023
- Article
Intermediary Balance Sheets and the Treasury Yield Curve
By: Wenxin Du, Benjamin Hebert and Wenhao Li
We document a regime change in the Treasury market post-Global Financial Crisis (GFC): dealers switched from net short to net long Treasury bonds. We construct “net-long” and “net-short” curves that account for balance sheet and financing costs, and show that actual... View Details
Du, Wenxin, Benjamin Hebert, and Wenhao Li. "Intermediary Balance Sheets and the Treasury Yield Curve." Art. 103722. Journal of Financial Economics 150, no. 3 (December 2023).
- 2023
- Article
M4: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities, and Models
By: Himabindu Lakkaraju, Xuhong Li, Mengnan Du, Jiamin Chen, Yekun Chai and Haoyi Xiong
While Explainable Artificial Intelligence (XAI) techniques have been widely studied to explain predictions made by deep neural networks, the way to evaluate the faithfulness of explanation results remains challenging, due to the heterogeneity of explanations for... View Details
Keywords: AI and Machine Learning
Lakkaraju, Himabindu, Xuhong Li, Mengnan Du, Jiamin Chen, Yekun Chai, and Haoyi Xiong. "M4: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities, and Models." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- 2023
- Article
MoPe: Model Perturbation-based Privacy Attacks on Language Models
By: Marvin Li, Jason Wang, Jeffrey Wang and Seth Neel
Recent work has shown that Large Language Models (LLMs) can unintentionally leak sensitive information present in their training data. In this paper, we present Model Perturbations (MoPe), a new method to identify with high confidence if a given text is in the training... View Details
Li, Marvin, Jason Wang, Jeffrey Wang, and Seth Neel. "MoPe: Model Perturbation-based Privacy Attacks on Language Models." Proceedings of the Conference on Empirical Methods in Natural Language Processing (2023): 13647–13660.
- 2023
- Article
Post Hoc Explanations of Language Models Can Improve Language Models
By: Satyapriya Krishna, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh and Himabindu Lakkaraju
Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance... View Details
Krishna, Satyapriya, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh, and Himabindu Lakkaraju. "Post Hoc Explanations of Language Models Can Improve Language Models." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- December 2023
- Article
Self-Orienting in Human and Machine Learning
By: Julian De Freitas, Ahmet Uğuralp, Zeliha Uğuralp, Laurie Paul, Joshua B. Tenenbaum and T. Ullman
A current proposal for a computational notion of self is a representation of one’s body in a specific time and place, which includes the recognition of that representation as the agent. This turns self-representation into a process of self-orientation, a challenging... View Details
De Freitas, Julian, Ahmet Uğuralp, Zeliha Uğuralp, Laurie Paul, Joshua B. Tenenbaum, and T. Ullman. "Self-Orienting in Human and Machine Learning." Nature Human Behaviour 7, no. 12 (December 2023): 2126–2139.
- 2023
- Other Article
The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and Multi-Purpose Corpus of Patent Applications
By: Mirac Suzgun, Luke Melas-Kyriazi, Suproteem K. Sarkar, Scott Duke Kominers and Stuart Shieber
Innovation is a major driver of economic and social development, and information about many kinds of innovation is embedded in semi-structured data from patents and patent applications. Though the impact and novelty of innovations expressed in patent data are difficult... View Details
Keywords: USPTO; Natural Language Processing; Classification; Summarization; Patent Novelty; Patent Trolls; Patent Enforceability; Patents; Innovation and Invention; Intellectual Property; AI and Machine Learning; Analytics and Data Science
Suzgun, Mirac, Luke Melas-Kyriazi, Suproteem K. Sarkar, Scott Duke Kominers, and Stuart Shieber. "The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and Multi-Purpose Corpus of Patent Applications." Conference on Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks Track 36 (2023).
- 2024
- Working Paper
The Uneven Impact of Generative AI on Entrepreneurial Performance
By: Nicholas G. Otis, Rowan Clarke, Solène Delecourt, David Holtz and Rembrand Koning
Scalable and low-cost AI assistance has the potential to improve firm decision-making and economic performance. However, running a business involves a myriad of open-ended problems, making it difficult to know whether recent AI advances can help business owners make... View Details
Keywords: AI and Machine Learning; Performance Improvement; Small Business; Decision Choices and Conditions; Kenya
Otis, Nicholas G., Rowan Clarke, Solène Delecourt, David Holtz, and Rembrand Koning. "The Uneven Impact of Generative AI on Entrepreneurial Performance." Harvard Business School Working Paper, No. 24-042, December 2023.
- 2023
- Article
Verifiable Feature Attributions: A Bridge between Post Hoc Explainability and Inherent Interpretability
By: Usha Bhalla, Suraj Srinivas and Himabindu Lakkaraju
With the increased deployment of machine learning models in various real-world applications, researchers and practitioners alike have emphasized the need for explanations of model behaviour. To this end, two broad strategies have been outlined in prior literature to... View Details
Bhalla, Usha, Suraj Srinivas, and Himabindu Lakkaraju. "Verifiable Feature Attributions: A Bridge between Post Hoc Explainability and Inherent Interpretability." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- 2023
- Article
Which Models Have Perceptually-Aligned Gradients? An Explanation via Off-Manifold Robustness
By: Suraj Srinivas, Sebastian Bordt and Himabindu Lakkaraju
One of the remarkable properties of robust computer vision models is that their input-gradients are often aligned with human perception, referred to in the literature as perceptually-aligned gradients (PAGs). Despite only being trained for classification, PAGs cause... View Details
Srinivas, Suraj, Sebastian Bordt, and Himabindu Lakkaraju. "Which Models Have Perceptually-Aligned Gradients? An Explanation via Off-Manifold Robustness." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- November 2023
- Case
Open Source Machine Learning at Google
Set in early 2023, the case exposes students to the challenges of managing open source software at Google. The case focuses on the challenges for Alex Spinelli, Vice President of Product Management for Core Machine Learning. He must set priorities for Google’s efforts... View Details
Keywords: Decision Choices and Conditions; Technological Innovation; Open Source Distribution; Strategy; AI and Machine Learning; Applications and Software; Technology Industry; United States
Greenstein, Shane, Martin Wattenberg, Fernanda B. Viégas, Daniel Yue, and James Barnett. "Open Source Machine Learning at Google." Harvard Business School Case 624-015, November 2023.
- November 2023
- Case
Riiid: Scaling AI Educational Services Globally
By: John Jong-Hyun Kim, Nancy Dai and Ruru Hoong
This article explores the definition and evolution of AI, its applications in education, and the role of AI, particularly in K-12 education. It discusses the founding of Riiid, an AI-driven educational technology company, and its journey in the education sector, with a... View Details
Keywords: AI and Machine Learning; Economic Sectors; Technological Innovation; Education Industry; South Korea; Asia
Kim, John Jong-Hyun, Nancy Dai, and Ruru Hoong. "Riiid: Scaling AI Educational Services Globally." Harvard Business School Case 324-030, November 2023.
- November 2023
- Case
Copilot(s): Generative AI at Microsoft and GitHub
This case tells the story of Microsoft’s 2018 acquisition of GitHub and the subsequent launch of GitHub Copilot, a tool that uses generative artificial intelligence to suggest snippets of code to software developers in real time. Set in late 2021, when Copilot was... View Details
Keywords: Business Ventures; Strategy; AI and Machine Learning; Applications and Software; Product Launch; Information Technology Industry; Technology Industry; Web Services Industry; United States; California
Nagle, Frank, Shane Greenstein, Maria P. Roche, Nataliya Langburd Wright, and Sarah Mehta. "Copilot(s): Generative AI at Microsoft and GitHub." Harvard Business School Case 624-010, November 2023.
- November 2023 (Revised April 2024)
- Case
Khanmigo: Revolutionizing Learning with GenAI
By: William A. Sahlman, Allison M. Ciechanover and Emily Grandjean
Already a leader in the edtech space since its 2008 launch, Khan Academy was now one of the first edtech organizations to embrace generative artificial intelligence ("genAI"). In March 2023, Khan Academy began beta testing Khanmigo, a genAI “guide” and tutor built with... View Details
Keywords: Technology Adoption; Leading Change; Entrepreneurship; Risk and Uncertainty; Education; AI and Machine Learning; Corporate Social Responsibility and Impact; Education Industry; Technology Industry; United States; San Francisco
Sahlman, William A., Allison M. Ciechanover, and Emily Grandjean. "Khanmigo: Revolutionizing Learning with GenAI." Harvard Business School Case 824-059, November 2023. (Revised April 2024.)
- November 2023
- Case
Chai Point
By: Rembrand Koning, Daniel W. Elfenbein and Kanika Jain
Chai Point was an Indian food and beverage company focused on chai. It started in 2010 as a retail store network but soon expanded to corporate offices by developing an IoT-enabled automatic tea and filter coffee machine. By 2023, Chai Point had 170 stores and 5000... View Details
Keywords: Entrepreneurship; Food; Resource Allocation; Vertical Integration; Expansion; Food and Beverage Industry; Technology Industry; Retail Industry; India
Koning, Rembrand, Daniel W. Elfenbein, and Kanika Jain. "Chai Point." Harvard Business School Case 724-418, November 2023.
- November 2023
- Article
A Quantity-Driven Theory of Term Premia and Exchange Rates
We develop a model in which specialized bond investors must absorb shocks to the supply and demand for long-term bonds in two currencies. Since long-term bonds and foreign exchange are both exposed to unexpected movements in short-term interest rates, a shift in the... View Details
Greenwood, Robin, Samuel G. Hanson, Jeremy C. Stein, and Adi Sunderam. "A Quantity-Driven Theory of Term Premia and Exchange Rates." Quarterly Journal of Economics 138, no. 4 (November 2023): 2327–2389.
- November–December 2023
- Article
Keep Your AI Projects on Track
By: Iavor Bojinov
AI—and especially its newest star, generative AI—is today a central theme in corporate boardrooms, leadership discussions, and casual exchanges among employees eager to supercharge their productivity. Sadly, beneath the aspirational headlines and tantalizing potential... View Details
Keywords: Generative Models; AI and Machine Learning; Success; Failure; Product Development; Technology Adoption
Bojinov, Iavor. "Keep Your AI Projects on Track." Harvard Business Review 101, no. 6 (November–December 2023): 53–59.
- November–December 2023
- Article
Network Centralization and Collective Adaptability to a Shifting Environment
By: Ethan S. Bernstein, Jesse C. Shore and Alice J. Jang
We study the connection between communication network structure and an organization’s collective adaptability to a shifting environment. Research has shown that network centralization—the degree to which communication flows disproportionately through one or more... View Details
Keywords: Network Centralization; Collective Intelligence; Organizational Change and Adaptation; Organizational Structure; Communication; Decision Making; Networks; Adaptation
Bernstein, Ethan S., Jesse C. Shore, and Alice J. Jang. "Network Centralization and Collective Adaptability to a Shifting Environment." Organization Science 34, no. 6 (November–December 2023): 2064–2096.
- November 2023
- Article
Psychological Factors Underlying Attitudes toward AI Tools
By: Julian De Freitas, Stuti Agarwal, B. Schmitt and N. Haslam
What are the psychological factors driving attitudes toward AI tools, and how can resistance to AI systems be overcome when they are beneficial? In this perspective, we first organize the main sources of resistance into five main categories: opacity, emotionlessness,... View Details
De Freitas, Julian, Stuti Agarwal, B. Schmitt, and N. Haslam. "Psychological Factors Underlying Attitudes toward AI Tools." Nature Human Behaviour 7, no. 11 (November 2023): 1845–1854.