Filter Results:
(189)
Show Results For
- All HBS Web
(317)
- News (46)
- Research (189)
- Events (1)
- Multimedia (1)
- Faculty Publications (125)
Show Results For
- All HBS Web
(317)
- News (46)
- Research (189)
- Events (1)
- Multimedia (1)
- Faculty Publications (125)
Sort by
- 2023
- Article
MoPe: Model Perturbation-based Privacy Attacks on Language Models
By: Marvin Li, Jason Wang, Jeffrey Wang and Seth Neel
Recent work has shown that Large Language Models (LLMs) can unintentionally leak sensitive information present in their training data. In this paper, we present Model Perturbations (MoPe), a new method to identify with high confidence if a given text is in the training... View Details
Li, Marvin, Jason Wang, Jeffrey Wang, and Seth Neel. "MoPe: Model Perturbation-based Privacy Attacks on Language Models." Proceedings of the Conference on Empirical Methods in Natural Language Processing (2023): 13647–13660.
- 01 Nov 1999
- Research & Ideas
John H. Patterson and the Sales Strategy of the National Cash Register Company, 1884 to 1922
objection, he acknowledged the legitimacy of the complaint, and then tried to counter. My method of taking orders, I presume, does not vary much from that of other managers. If the party calling is a... View Details
Keywords: by Walter A. Friedman
- Teaching Interest
Data Science for Managers
- Served as a teaching fellow; assisted MBA students with classroom coding exercises.
- Developed course materials, including new case studies, technical notes, and code notebooks students used to analzye case data.
- Developed interactive web... View Details
- Teaching Interest
Applied Business Analytics
Course Overview:
Business Analytics has become a core function in many firms today and is driving innovation in the form of new business and operating models. Data-driven decision-making requires understanding of statistics, computer... View Details
- 06 Feb 2018
- First Look
First Look at New Research and Ideas: February 6, 2018
and Machine Learning By: Choudhury, Prithwiraj, Evan Starr, and Rajshree Agarwal Abstract—The advent of artificial intelligence in the form of... View Details
- 2023
- Working Paper
In-Context Unlearning: Language Models as Few Shot Unlearners
By: Martin Pawelczyk, Seth Neel and Himabindu Lakkaraju
Machine unlearning, the study of efficiently removing the impact of specific training points on the
trained model, has garnered increased attention of late, driven by the need to comply with privacy
regulations like the Right to be Forgotten. Although unlearning is... View Details
Pawelczyk, Martin, Seth Neel, and Himabindu Lakkaraju. "In-Context Unlearning: Language Models as Few Shot Unlearners." Working Paper, October 2023.
- February 2021
- Tutorial
What is AI?
By: Tsedal Neeley
This video explores the elements that constitute artificial intelligence (AI). From its mathematical basis to current advances in AI, this video introduces students to data, tools, and statistical models that make a computer 'intelligent.' Through an explanation of... View Details
- 2024
- Working Paper
Using LLMs for Market Research
By: James Brand, Ayelet Israeli and Donald Ngwe
Large language models (LLMs) have rapidly gained popularity as labor-augmenting
tools for programming, writing, and many other processes that benefit from quick text
generation. In this paper we explore the uses and benefits of LLMs for researchers and
practitioners... View Details
Keywords: Large Language Model; Research; AI and Machine Learning; Analysis; Customers; Consumer Behavior; Technology Industry; Information Technology Industry
Brand, James, Ayelet Israeli, and Donald Ngwe. "Using LLMs for Market Research." Harvard Business School Working Paper, No. 23-062, April 2023. (Revised July 2024.)
- Article
Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)
By: Eva Ascarza and Ayelet Israeli
An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those “protected”... View Details
Keywords: Algorithm Bias; Personalization; Targeting; Generalized Random Forests (GRF); Discrimination; Customization and Personalization; Decision Making; Fairness; Mathematical Methods
Ascarza, Eva, and Ayelet Israeli. "Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)." e2115126119. Proceedings of the National Academy of Sciences 119, no. 11 (March 8, 2022).
- 2023
- Article
Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators
By: Benjamin Jakubowski, Siram Somanchi, Edward McFowland III and Daniel B. Neill
Regression discontinuity (RD) designs are widely used to estimate causal effects in the absence of a randomized experiment. However, standard approaches to RD analysis face two significant limitations. First, they require a priori knowledge of discontinuities in... View Details
Jakubowski, Benjamin, Siram Somanchi, Edward McFowland III, and Daniel B. Neill. "Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators." Journal of Machine Learning Research 24, no. 133 (2023): 1–57.
- Forthcoming
- Book
The Experimentation Machine: Finding Product–Market Fit in the Age of AI
Leverage AI to be a 10x Founder
Today’s most successful founders know that the startups that learn the fastest will win. In The Experimentation Machine, I reveal how AI is transforming the way startups find product-market fit and scale.... View Details
Today’s most successful founders know that the startups that learn the fastest will win. In The Experimentation Machine, I reveal how AI is transforming the way startups find product-market fit and scale.... View Details
Keywords: AI; Founder; Startup; AI and Machine Learning; Technology Adoption; Business Startups; Entrepreneurship; Market Entry and Exit
Bussgang, Jeffrey J. The Experimentation Machine: Finding Product–Market Fit in the Age of AI. Damn Gravity Media, forthcoming.
- 22 Aug 2005
- Research & Ideas
The Hard Work of Failure Analysis
outside facilitators, can help keep the process productive. Next, skills for managing a group process of analyzing a failure with a spirit of inquiry and sufficient understanding of the scientific method are... View Details
Keywords: by Amy Edmondson & Mark D. Cannon
- Research Summary
Overview
Over the last decade, technology companies like Amazon, Google, and Netflix have pioneered data-driven research and development processes centered on massive experimentation. However, as companies increase the breadth and scale of their experiments to millions of... View Details
- Research Summary
Overview
By: Iavor I. Bojinov
Over the last decade, technology companies like Amazon, Google, and Netflix have pioneered data-driven research and development processes centered on massive experimentation. However, as companies increase the breadth and scale of their experiments to millions of... View Details
- 2023
- Working Paper
An Experimental Design for Anytime-Valid Causal Inference on Multi-Armed Bandits
By: Biyonka Liang and Iavor I. Bojinov
Typically, multi-armed bandit (MAB) experiments are analyzed at the end of the study and thus require the analyst to specify a fixed sample size in advance. However, in many online learning applications, it is advantageous to continuously produce inference on the... View Details
Liang, Biyonka, and Iavor I. Bojinov. "An Experimental Design for Anytime-Valid Causal Inference on Multi-Armed Bandits." Harvard Business School Working Paper, No. 24-057, March 2024.
- 2023
- Article
Post Hoc Explanations of Language Models Can Improve Language Models
By: Satyapriya Krishna, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh and Himabindu Lakkaraju
Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance... View Details
Krishna, Satyapriya, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh, and Himabindu Lakkaraju. "Post Hoc Explanations of Language Models Can Improve Language Models." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- January 2017 (Revised March 2017)
- Case
IBM Transforming, 2012–2016: Ginni Rometty Steers Watson
By: Rosabeth Moss Kanter and Jonathan Cohen
To transform IBM for the next technology wave, Ginni Rometty, who became CEO in 2012, led divestment of declining businesses, made acquisitions in digital innovation and cloud computing, formed partnerships with former competitors such as Apple and tech startups, and... View Details
Keywords: Digital; Technological Change; Artificial Intelligence; Data; IBM; Watson; Internet Of Things; Innovation and Invention; Management; Sales; Information Technology; Technological Innovation; Transformation; AI and Machine Learning
Kanter, Rosabeth Moss, and Jonathan Cohen. "IBM Transforming, 2012–2016: Ginni Rometty Steers Watson." Harvard Business School Case 317-046, January 2017. (Revised March 2017.)
- 2022
- Article
Efficiently Training Low-Curvature Neural Networks
By: Suraj Srinivas, Kyle Matoba, Himabindu Lakkaraju and Francois Fleuret
Standard deep neural networks often have excess non-linearity, making them susceptible to issues such as low adversarial robustness and gradient instability. Common methods to address these downstream issues, such as adversarial training, are expensive and often... View Details
Keywords: AI and Machine Learning
Srinivas, Suraj, Kyle Matoba, Himabindu Lakkaraju, and Francois Fleuret. "Efficiently Training Low-Curvature Neural Networks." Advances in Neural Information Processing Systems (NeurIPS) (2022).
- September 2011 (Revised July 2012)
- Case
Building Watson: Not So Elementary, My Dear!
By: Willy Shih
This case is set inside IBM Research's efforts to build a computer that can successfully take on human challengers playing the game show Jeopardy! It opens with the machine named Watson offering the incorrect answer "Toronto" to a seemingly simple question during the... View Details
Keywords: Technological Innovation; Standards; Product Development; Organizational Change and Adaptation; Mathematical Methods; Research and Development; Information Technology
Shih, Willy. "Building Watson: Not So Elementary, My Dear!" Harvard Business School Case 612-017, September 2011. (Revised July 2012.)
- 2023
- Working Paper
Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness
By: Neil Menghani, Edward McFowland III and Daniel B. Neill
In this paper, we develop a new criterion, "insufficiently justified disparate impact" (IJDI), for assessing whether recommendations (binarized predictions) made by an algorithmic decision support tool are fair. Our novel, utility-based IJDI criterion evaluates false... View Details
Menghani, Neil, Edward McFowland III, and Daniel B. Neill. "Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness." Working Paper, June 2023.