Filter Results:
(790)
Show Results For
- All HBS Web (1,026)
- Faculty Publications (347)
Show Results For
- All HBS Web (1,026)
- Faculty Publications (347)
Sort by
- March 2024 (Revised January 2025)
- Case
Hippo: Weathering the Storm of the Home Insurance Crisis
By: Lauren Cohen, Grace Headinger and Sophia Pan
Rick McCathron, CEO of Hippo, considered how the firm’s underwriting model could account for the effects of climate change. Along with providing smart home packages, targeting risk-friendly customers, and using data-driven pricing, the Insurtech used technologically... View Details
Keywords: Fintech; Underwriters; Big Data; Insurance Companies; Business Model Design; Weather Insurance; Business Model; Forecasting and Prediction; Climate Change; Environmental Sustainability; Green Technology; Technological Innovation; Natural Environment; Natural Disasters; Weather; Business Strategy; Competitive Advantage; Business Earnings; Insurance; Social Issues; Insurance Industry; United States; California
- 2025
- Working Paper
Dynamic Personalization with Multiple Customer Signals: Multi-Response State Representation in Reinforcement Learning
Reinforcement learning (RL) offers potential for optimizing sequences of customer interactions by modeling the relationships
between customer states, company actions, and long-term value. However, its practical implementation often faces significant
challenges.... View Details
Keywords: Dynamic Policy; Deep Reinforcement Learning; Representation Learning; Dynamic Difficulty Adjustment; Latent Variable Models; Customer Relationship Management; Customer Value and Value Chain; Foreign Direct Investment; Analytics and Data Science
Ma, Liangzong, Ta-Wei Huang, Eva Ascarza, and Ayelet Israeli. "Dynamic Personalization with Multiple Customer Signals: Multi-Response State Representation in Reinforcement Learning." Harvard Business School Working Paper, No. 25-037, February 2025.
- December 2014
- Case
Groupon: A New CEO Takes Charge
By: Lynda M. Applegate and Arnold B. Peinado
On August 7, 2013, Eric Lefkofsky, the chairman and largest shareholder of Groupon was named CEO, replacing founder Andrew Mason, who had run the company since its inception in 2009. When Groupon had its initial public offering (IPO) in November 2011, the company's... View Details
- 2021
- Working Paper
Time Dependence and Preference: Implications for Compensation Structure and Shift Scheduling
By: Doug J. Chung, Byungyeon Kim and Byoung G. Park
This study jointly examines agents’ time dependence—period effects within instantaneous utility—and time preference—behavior on discounting future utility. The study considers the start- and end-of-period effects for time dependence and exponential and hyperbolic... View Details
Keywords: Time Preferences; Present Bias; Hyperbolic Discounting; Compensation; Dynamic Structural Models; Identification; Time Management; Motivation and Incentives; Behavior; Performance; Compensation and Benefits
Chung, Doug J., Byungyeon Kim, and Byoung G. Park. "Time Dependence and Preference: Implications for Compensation Structure and Shift Scheduling." Harvard Business School Working Paper, No. 21-121, April 2021.
- July 2024
- Article
Chatbots and Mental Health: Insights into the Safety of Generative AI
By: Julian De Freitas, Ahmet Kaan Uğuralp, Zeliha Uğuralp and Stefano Puntoni
Chatbots are now able to engage in sophisticated conversations with consumers. Due to the ‘black box’ nature of the algorithms, it is impossible to predict in advance how these conversations will unfold. Behavioral research provides little insight into potential safety... View Details
Keywords: Autonomy; Chatbots; New Technology; Brand Crises; Mental Health; Large Language Model; AI and Machine Learning; Behavior; Well-being; Technological Innovation; Ethics
De Freitas, Julian, Ahmet Kaan Uğuralp, Zeliha Uğuralp, and Stefano Puntoni. "Chatbots and Mental Health: Insights into the Safety of Generative AI." Journal of Consumer Psychology 34, no. 3 (July 2024): 481–491.
- October 2013
- Article
Ad Revenue and Content Commercialization: Evidence from Blogs
By: Monic Sun and Feng Zhu
Many scholars argue that when incentivized by ad revenue, content providers are more likely to tailor their content to attract "eyeballs," and as a result, popular content may be excessively supplied. We empirically test this prediction by taking advantage of the... View Details
Keywords: Ad-sponsored Business Models; Media Content; Blog; Revenue Sharing; User-generated Content; Platform-based Markets; Blogs; Business Model; Digital Platforms; Commercialization; Digital Marketing
Sun, Monic, and Feng Zhu. "Ad Revenue and Content Commercialization: Evidence from Blogs." Management Science 59, no. 10 (October 2013): 2314–2331.
- October 2017 (Revised November 2017)
- Case
NYC311
By: Constantine E. Kontokosta, Mitchell Weiss, Christine Snively and Sarah Gulick
Joe Morrisroe, executive director for NYC311, had some gut instincts but no definitive answer to the question he was just asked by one of the mayor’s deputies: “Are some communities being underserved by 311? How do we know we are hearing from the right people?” Founded... View Details
Keywords: New York City; NYC; 311; NYC311; Big Data; Equal Access; Bias; Data Analysis; Public Entrepreneurship; Urban Informatics; Predictive Analytics; Chief Data Officer; Data Analytics; Cities; City Leadership; Analytics and Data Science; Analysis; Prejudice and Bias; Entrepreneurship; Public Sector; City; Public Administration Industry; New York (city, NY)
- October 2023
- Article
Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA
By: Matthew S. Johnson, David I. Levine and Michael W. Toffel
We study how a regulator can best target inspections. Our case study is a U.S. Occupational Safety and Health Administration (OSHA) program that randomly allocated some inspections. On average, each inspection averted 2.4 serious injuries (9%) over the next five years.... View Details
Keywords: Safety Regulations; Regulations; Regulatory Enforcement; Machine Learning Models; Safety; Operations; Service Operations; Production; Forecasting and Prediction; Decisions; United States
Johnson, Matthew S., David I. Levine, and Michael W. Toffel. "Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA." American Economic Journal: Applied Economics 15, no. 4 (October 2023): 30–67. (Profiled in the Regulatory Review.)
- Teaching Interest
Overview
Paul is primarily interested in teaching data science to management students through the case method. This includes technical topics (programming and statistics) as well as higher-level management issues (digital transformation, data governance, etc.) As a research... View Details
Keywords: A/B Testing; AI; AI Algorithms; AI Creativity; Algorithm; Algorithm Bias; Algorithmic Bias; Algorithmic Fairness; Algorithms; Analytics; Application Program Interface; Artificial Intelligence; Causality; Causal Inference; Computing; Computers; Data Analysis; Data Analytics; Data Architecture; Data As A Service; Data Centers; Data Governance; Data Labeling; Data Management; Data Manipulation; Data Mining; Data Ownership; Data Privacy; Data Protection; Data Science; Data Science And Analytics Management; Data Scientists; Data Security; Data Sharing; Data Strategy; Data Visualization; Database; Data-driven Decision-making; Data-driven Management; Data-driven Operations; Datathon; Economics Of AI; Economics Of Innovation; Economics Of Information System; Economics Of Science; Forecast; Forecast Accuracy; Forecasting; Forecasting And Prediction; Information Technology; Machine Learning; Machine Learning Models; Prediction; Prediction Error; Predictive Analytics; Predictive Models; Analysis; AI and Machine Learning; Analytics and Data Science; Applications and Software; Digital Transformation; Information Management; Digital Strategy; Technology Adoption
- April 12, 2023
- Article
Using AI to Adjust Your Marketing and Sales in a Volatile World
By: Das Narayandas and Arijit Sengupta
Why are some firms better and faster than others at adapting their use of customer data to respond to changing or uncertain marketing conditions? A common thread across faster-acting firms is the use of AI models to predict outcomes at various stages of the customer... View Details
Keywords: Forecasting and Prediction; AI and Machine Learning; Consumer Behavior; Technology Adoption; Competitive Advantage
Narayandas, Das, and Arijit Sengupta. "Using AI to Adjust Your Marketing and Sales in a Volatile World." Harvard Business Review Digital Articles (April 12, 2023).
- 20 Oct 2011
- Research & Ideas
Getting the Marketing Mix Right
their FSL model, however, the results provided much greater detail about the potential effects of different marketing investments. For example, the model predicted that sales gains from DTCA and M&E... View Details
Keywords: by Dina Gerdeman
- February 2018 (Revised December 2020)
- Case
People Analytics at Teach For America (A)
By: Jeffrey T. Polzer and Julia Kelley
As of mid-2016, national nonprofit Teach For America (TFA) had struggled with three consecutive years of declining application totals, and senior management was re-examining the organization's strategy, including recruitment and selection. A few months earlier, former... View Details
Polzer, Jeffrey T., and Julia Kelley. "People Analytics at Teach For America (A)." Harvard Business School Case 418-013, February 2018. (Revised December 2020.)
- April 12, 2022
- Article
Evaluation of Individual and Ensemble Probabilistic Forecasts of COVID-19 Mortality in the United States
By: Estee Y. Cramer, Evan L. Ray, Velma K. Lopez, Johannes Bracher, Andrea Brennen, Alvaro J. Castro Rivadeneira, Michael Lingzhi Li and et al.
Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models... View Details
Keywords: COVID-19; Forecasting and Prediction; Health Pandemics; Mathematical Methods; Partners and Partnerships
Cramer, Estee Y., Evan L. Ray, Velma K. Lopez, Johannes Bracher, Andrea Brennen, Alvaro J. Castro Rivadeneira, Michael Lingzhi Li, and et al. "Evaluation of Individual and Ensemble Probabilistic Forecasts of COVID-19 Mortality in the United States." e2113561119. Proceedings of the National Academy of Sciences 119, no. 15 (April 12, 2022). (See full author list here.)
- June 2016
- Teaching Note
HubSpot: Lower Churn through Greater CHI
By: Jill Avery, Asis Martinez Jerez and Thomas Steenburgh
HubSpot, a web marketing startup selling inbound marketing software to small- and medium-sized businesses, is under pressure from its venture capital partners to rapidly acquire new customers and to maintain a low level of customer churn. The B2B SaaS company is in the... View Details
- May 2018
- Article
Nowcasting Gentrification: Using Yelp Data to Quantify Neighborhood Change
By: Edward L. Glaeser, Hyunjin Kim and Michael Luca
Data from digital platforms have the potential to improve our understanding of gentrification and enable new measures of how neighborhoods change in close to real time. Combining data on businesses from Yelp with data on gentrification from the Census, Federal Housing... View Details
Keywords: Forecasting Models; Simulation Methods; Regional Economic Activity: Growth, Development, Environmental Issues, And Changes; Geographic Location; Local Range; Transition; Analytics and Data Science; Measurement and Metrics; Economic Growth; Forecasting and Prediction
Glaeser, Edward L., Hyunjin Kim, and Michael Luca. "Nowcasting Gentrification: Using Yelp Data to Quantify Neighborhood Change." AEA Papers and Proceedings 108 (May 2018): 77–82.
- 2017
- Working Paper
Investment Timing with Costly Search for Financing
By: Samuel Antill
I develop a dynamic model of investment timing in which firms must first choose when to search for external financing. Search is costly and the arrival of investors is uncertain, leading to delay in financing and investment. Depending on parameters, my model can... View Details
Keywords: Real Options; Search And Bargaining; Time-varying Financial Conditions; Investment; Venture Capital; Mathematical Methods
Antill, Samuel. "Investment Timing with Costly Search for Financing." Working Paper, December 2017.
- 2021
- Working Paper
Equilibrium Effects of Pay Transparency
By: Zoë B. Cullen and Bobak Pakzad-Hurson
The public discourse around pay transparency has focused on the direct effect: how workers seek
to rectify newly-disclosed pay inequities through renegotiations. The question of how wage-setting
and hiring practices of the firm respond in equilibrium has received... View Details
- 2020
- Working Paper
Is Accounting Useful for Forecasting GDP Growth? A Machine Learning Perspective
We provide a comprehensive examination of whether, to what extent, and which accounting variables are useful for improving the predictive accuracy of GDP growth forecasts. We leverage statistical models that accommodate a broad set of (341) variables—outnumbering the... View Details
Keywords: Big Data; Elastic Net; GDP Growth; Machine Learning; Macro Forecasting; Short Fat Data; Accounting; Economic Growth; Forecasting and Prediction; Analytics and Data Science
Datar, Srikant, Apurv Jain, Charles C.Y. Wang, and Siyu Zhang. "Is Accounting Useful for Forecasting GDP Growth? A Machine Learning Perspective." Harvard Business School Working Paper, No. 21-113, December 2020.
- September 26, 2018
- Article
Ownership and Power Structure: Together at Last
By: Laura Alfaro, Nicholas Bloom, Paola Conconi, Harald Fadinger, Patrick Legros, Andrew Newman, Raffaella Sadun and John Van Reenen
Economists have largely ignored the deep interdependency between integration and delegation. This column describes a new theory of integration and delegation choices aimed at shedding light on how these distinct elements of organizational design interact. Contrary to... View Details
Alfaro, Laura, Nicholas Bloom, Paola Conconi, Harald Fadinger, Patrick Legros, Andrew Newman, Raffaella Sadun, and John Van Reenen. "Ownership and Power Structure: Together at Last." Vox, CEPR Policy Portal (September 26, 2018).
- August 2018 (Revised September 2018)
- Case
LendingClub (A): Data Analytic Thinking (Abridged)
By: Srikant M. Datar and Caitlin N. Bowler
LendingClub was founded in 2006 as an alternative, peer-to-peer lending model to connect individual borrowers to individual investor-lenders through an online platform. Since 2014 the company has worked with institutional investors at scale. While the company assigns... View Details
Keywords: Data Science; Data Analytics; Investing; Loans; Investment; Financing and Loans; Analytics and Data Science; Analysis; Forecasting and Prediction; Business Model
Datar, Srikant M., and Caitlin N. Bowler. "LendingClub (A): Data Analytic Thinking (Abridged)." Harvard Business School Case 119-020, August 2018. (Revised September 2018.)