Filter Results:
(564)
Show Results For
- All HBS Web
(931)
- People (1)
- News (160)
- Research (564)
- Events (10)
- Multimedia (3)
- Faculty Publications (468)
Show Results For
- All HBS Web
(931)
- People (1)
- News (160)
- Research (564)
- Events (10)
- Multimedia (3)
- Faculty Publications (468)
Sort by
- 2022
- Article
Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis.
By: Martin Pawelczyk, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay and Himabindu Lakkaraju
As machine learning (ML) models become more widely deployed in high-stakes applications, counterfactual explanations have emerged as key tools for providing actionable model explanations in practice. Despite the growing popularity of counterfactual explanations, a... View Details
Keywords: Machine Learning Models; Counterfactual Explanations; Adversarial Examples; Mathematical Methods
Pawelczyk, Martin, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay, and Himabindu Lakkaraju. "Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
- 2024
- Article
Neyman Meets Causal Machine Learning: Experimental Evaluation of Individualized Treatment Rules
By: Michael Lingzhi Li and Kosuke Imai
A century ago, Neyman showed how to evaluate the efficacy of treatment using a randomized experiment under a minimal set of assumptions. This classical repeated sampling framework serves as a basis of routine experimental analyses conducted by today’s scientists across... View Details
Li, Michael Lingzhi, and Kosuke Imai. "Neyman Meets Causal Machine Learning: Experimental Evaluation of Individualized Treatment Rules." Journal of Causal Inference 12, no. 1 (2024).
- April 2017
- Case
The Future of Patent Examination at the USPTO
By: Prithwiraj Choudhury, Tarun Khanna and Sarah Mehta
The U.S. Patent and Trademark Office (USPTO) is the federal government agency responsible for evaluating and granting patents and trademarks. In 2015, the USPTO employed approximately 8,000 patent examiners who granted nearly 300,000 patents to inventors. As of April... View Details
Keywords: Machine Learning; Telework; Collaborating With Unions; Human Resources; Recruitment; Retention; Intellectual Property; Copyright; Patents; Trademarks; Knowledge Sharing; Technology Adoption; Organizational Change and Adaptation; Performance Productivity; Performance Improvement; District of Columbia
Choudhury, Prithwiraj, Tarun Khanna, and Sarah Mehta. "The Future of Patent Examination at the USPTO." Harvard Business School Case 617-027, April 2017.
- Research Summary
Overview
I develop machine learning tools and techniques which enable human decision makers to make better decisions. More specifically, my research addresses the following fundamental questions pertaining to human and algorithmic decision-making:
1. How to build... View Details
1. How to build... View Details
- December 1, 2021
- Article
Do You Know How Your Teams Get Work Done?
By: Rohan Narayana Murty, Rajath B. Das, Scott Duke Kominers, Arjun Narayan, Suraj Srinivasan, Tarun Khanna and Kartik Hosanagar
In a research study at four Fortune 500 companies, when managers were asked about their teams’ work, on average they either did not know or could not remember 60% of the work their teams do. This is a major problem because it can lead to unrealistic digital... View Details
Keywords: Leading Teams; Work Recall Gap; Machine Learning; Algorithms; Groups and Teams; Management; Technological Innovation
Murty, Rohan Narayana, Rajath B. Das, Scott Duke Kominers, Arjun Narayan, Suraj Srinivasan, Tarun Khanna, and Kartik Hosanagar. "Do You Know How Your Teams Get Work Done?" Harvard Business Review Digital Articles (December 1, 2021).
- 14 Aug 2017
- Conference Presentation
A Convex Framework for Fair Regression
By: Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel and Aaron Roth
We introduce a flexible family of fairness regularizers for (linear and logistic) regression problems. These regularizers all enjoy convexity, permitting fast optimization, and they span the range from notions of group fairness to strong individual fairness. By varying... View Details
Berk, Richard, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel, and Aaron Roth. "A Convex Framework for Fair Regression." Paper presented at the 4th Workshop on Fairness, Accountability, and Transparency in Machine Learning, Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), August 14, 2017.
- 2021
- Working Paper
Time and the Value of Data
By: Ehsan Valavi, Joel Hestness, Newsha Ardalani and Marco Iansiti
Managers often believe that collecting more data will continually improve the accuracy of their machine learning models. However, we argue in this paper that when data lose relevance over time, it may be optimal to collect a limited amount of recent data instead of... View Details
Keywords: Economics Of AI; Machine Learning; Non-stationarity; Perishability; Value Depreciation; Analytics and Data Science; Value
Valavi, Ehsan, Joel Hestness, Newsha Ardalani, and Marco Iansiti. "Time and the Value of Data." Harvard Business School Working Paper, No. 21-016, August 2020. (Revised November 2021.)
- October 2023
- Article
Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA
By: Matthew S. Johnson, David I. Levine and Michael W. Toffel
We study how a regulator can best target inspections. Our case study is a U.S. Occupational Safety and Health Administration (OSHA) program that randomly allocated some inspections. On average, each inspection averted 2.4 serious injuries (9%) over the next five years.... View Details
Keywords: Safety Regulations; Regulations; Regulatory Enforcement; Machine Learning Models; Safety; Operations; Service Operations; Production; Forecasting and Prediction; Decisions; United States
Johnson, Matthew S., David I. Levine, and Michael W. Toffel. "Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA." American Economic Journal: Applied Economics 15, no. 4 (October 2023): 30–67. (Profiled in the Regulatory Review.)
- Article
Who, When, and Why: A Machine Learning Approach to Prioritizing Students at Risk of Not Graduating High School on Time
By: Everaldo Aguiar, Himabindu Lakkaraju, Nasir Bhanpuri, David Miller, Ben Yuhas, Kecia Addison and Rayid Ghani
Aguiar, Everaldo, Himabindu Lakkaraju, Nasir Bhanpuri, David Miller, Ben Yuhas, Kecia Addison, and Rayid Ghani. "Who, When, and Why: A Machine Learning Approach to Prioritizing Students at Risk of Not Graduating High School on Time." Proceedings of the International Learning Analytics and Knowledge Conference 5th (2015).
- 2024
- Article
Learning Under Random Distributional Shifts
By: Kirk Bansak, Elisabeth Paulson and Dominik Rothenhäusler
Algorithmic assignment of refugees and asylum seekers to locations within host
countries has gained attention in recent years, with implementations in the U.S.
and Switzerland. These approaches use data on past arrivals to generate machine
learning models that can... View Details
Bansak, Kirk, Elisabeth Paulson, and Dominik Rothenhäusler. "Learning Under Random Distributional Shifts." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 27th (2024).
- November 2023 (Revised April 2024)
- Case
Khanmigo: Revolutionizing Learning with GenAI
By: William A. Sahlman, Allison M. Ciechanover and Emily Grandjean
Already a leader in the edtech space since its 2008 launch, Khan Academy was now one of the first edtech organizations to embrace generative artificial intelligence ("genAI"). In March 2023, Khan Academy began beta testing Khanmigo, a genAI “guide” and tutor built with... View Details
Keywords: Technology Adoption; Leading Change; Entrepreneurship; Risk and Uncertainty; Education; AI and Machine Learning; Corporate Social Responsibility and Impact; Education Industry; Technology Industry; United States; San Francisco
Sahlman, William A., Allison M. Ciechanover, and Emily Grandjean. "Khanmigo: Revolutionizing Learning with GenAI." Harvard Business School Case 824-059, November 2023. (Revised April 2024.)
- Article
Towards Robust and Reliable Algorithmic Recourse
By: Sohini Upadhyay, Shalmali Joshi and Himabindu Lakkaraju
As predictive models are increasingly being deployed in high-stakes decision making (e.g., loan
approvals), there has been growing interest in post-hoc techniques which provide recourse to affected
individuals. These techniques generate recourses under the assumption... View Details
Keywords: Machine Learning Models; Algorithmic Recourse; Decision Making; Forecasting and Prediction
Upadhyay, Sohini, Shalmali Joshi, and Himabindu Lakkaraju. "Towards Robust and Reliable Algorithmic Recourse." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
- Article
Counterfactual Explanations Can Be Manipulated
By: Dylan Slack, Sophie Hilgard, Himabindu Lakkaraju and Sameer Singh
Counterfactual explanations are useful for both generating recourse and auditing fairness between groups. We seek to understand whether adversaries can manipulate counterfactual explanations in an algorithmic recourse setting: if counterfactual explanations indicate... View Details
Slack, Dylan, Sophie Hilgard, Himabindu Lakkaraju, and Sameer Singh. "Counterfactual Explanations Can Be Manipulated." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
- December 2020
- Supplement
VIA Science (B)
By: Juan Alcácer, Rembrand Koning, Annelena Lobb and Kerry Herman
Via (a) captures the early days of the data analytics startup as founders Gounden and Ravanis considered which markets offer the right opportunities for their firm and what kinds of experiments will help them narrow their choice. Supplement Via (b) reveals the... View Details
Keywords: Data Analytics; Machine Learning; Artificial Intelligence; Strategy; Business Startups; AI and Machine Learning; Telecommunications Industry; Utilities Industry; United States; Japan
Alcácer, Juan, Rembrand Koning, Annelena Lobb, and Kerry Herman. "VIA Science (B)." Harvard Business School Supplement 721-368, December 2020.
- October–December 2022
- Article
Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem
By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed... View Details
Keywords: Machine Learning; Econometric Analysis; Instrumental Variable; Random Forest; Causal Inference; AI and Machine Learning; Forecasting and Prediction
Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." INFORMS Journal on Data Science 1, no. 2 (October–December 2022): 138–155.
- November 2022
- Article
A Language-Based Method for Assessing Symbolic Boundary Maintenance between Social Groups
By: Anjali M. Bhatt, Amir Goldberg and Sameer B. Srivastava
When the social boundaries between groups are breached, the tendency for people to erect and maintain symbolic boundaries intensifies. Drawing on extant perspectives on boundary maintenance, we distinguish between two strategies that people pursue in maintaining... View Details
Keywords: Culture; Machine Learning; Natural Language Processing; Symbolic Boundaries; Organizations; Boundaries; Social Psychology; Interpersonal Communication; Organizational Culture
Bhatt, Anjali M., Amir Goldberg, and Sameer B. Srivastava. "A Language-Based Method for Assessing Symbolic Boundary Maintenance between Social Groups." Sociological Methods & Research 51, no. 4 (November 2022): 1681–1720.
- July 2019 (Revised November 2019)
- Case
Osaro: Picking the Best Path
By: William R. Kerr, James Palano and Bastiane Huang
The founder of Osaro saw the potential of deep reinforcement learning to allow robots to be applied to new applications. Osaro targeted warehousing, already a dynamic industry for robotics and automation, for its initial product—a system which would allow robotic arms... View Details
Keywords: Artificial Intelligence; Machine Learning; Robotics; Robots; Ecommerce; Fulfillment; Warehousing; AI; Startup; Technology Commercialization; Business Startups; Entrepreneurship; Logistics; Order Taking and Fulfillment; Information Technology; Commercialization; Learning; Complexity; Competition; E-commerce
Kerr, William R., James Palano, and Bastiane Huang. "Osaro: Picking the Best Path." Harvard Business School Case 820-012, July 2019. (Revised November 2019.)
- 2017
- Working Paper
The Need for Speed: Effects of Uncertainty Reduction in Patenting
By: Mike Horia Teodorescu
Patents are essential in commerce to establish property rights for ideas and to give equal protection to firms that develop new technologies. Young firms especially depend on the protection of intellectual property to bring a product from concept to market. However,... View Details
- October 2023 (Revised June 2024)
- Case
ReUp Education: Can AI Help Learners Return to College?
By: Kris Ferreira, Christopher Thomas Ryan and Sarah Mehta
Founded in 2015, ReUp Education helps “stopped out students”—learners who have stopped making progress towards graduation—achieve their college completion goals. The company relies on a team of success coaches to engage with learners and help them reenroll. In 2019,... View Details
Keywords: AI; Algorithms; Machine Learning; Edtech; Education Technology; Analysis; Higher Education; AI and Machine Learning; Customization and Personalization; Failure; Education Industry; Technology Industry; United States
Ferreira, Kris, Christopher Thomas Ryan, and Sarah Mehta. "ReUp Education: Can AI Help Learners Return to College?" Harvard Business School Case 624-007, October 2023. (Revised June 2024.)
- October 20, 2020
- Article
Expanding AI's Impact with Organizational Learning
By: Sam Ransbotham, Shervin Khodabandeh, David Kiron, François Candelon, Michael Chu and Burt LaFountain
Most companies developing AI capabilities have yet to gain significant financial benefits from their efforts. Only when organizations add the ability to learn with AI do significant benefits become likely. View Details
Ransbotham, Sam, Shervin Khodabandeh, David Kiron, François Candelon, Michael Chu, and Burt LaFountain. "Expanding AI's Impact with Organizational Learning." MIT Sloan Management Review, Big Ideas Artificial Intelligence and Business Strategy Initiative (website) (October 20, 2020). (Findings from the 2020 Artificial Intelligence
Global Executive Study and Research Project.)