Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (659) Arrow Down
Filter Results: (659) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (1,031)
    • People  (1)
    • News  (155)
    • Research  (659)
    • Events  (13)
    • Multimedia  (3)
  • Faculty Publications  (567)

Show Results For

  • All HBS Web  (1,031)
    • People  (1)
    • News  (155)
    • Research  (659)
    • Events  (13)
    • Multimedia  (3)
  • Faculty Publications  (567)
← Page 4 of 659 Results →
Sort by

Are you looking for?

→Search All HBS Web
  • April 2024
  • Article

A Machine Learning Algorithm Predicting Risk of Dilating VUR among Infants with Hydronephrosis Using UTD Classification

By: Hsin-Hsiao Scott Wang, Michael Lingzhi Li, Dylan Cahill, John Panagides, Tanya Logvinenko, Jeanne Chow and Caleb Nelson
Backgrounds: Urinary Tract Dilation (UTD) classification has been designed to be a more objective grading system to evaluate antenatal and post-natal UTD. Due to unclear association between UTD classifications to specific anomalies such as vesico-ureteral reflux (VUR),... View Details
Keywords: Health Disorders; Health Testing and Trials; AI and Machine Learning; Health Industry
Citation
Read Now
Related
Wang, Hsin-Hsiao Scott, Michael Lingzhi Li, Dylan Cahill, John Panagides, Tanya Logvinenko, Jeanne Chow, and Caleb Nelson. "A Machine Learning Algorithm Predicting Risk of Dilating VUR among Infants with Hydronephrosis Using UTD Classification." Journal of Pediatric Urology 20, no. 2 (April 2024): 271–278.
  • 2019
  • Working Paper

Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles

By: Prithwiraj Choudhury, Dan Wang, Natalie A. Carlson and Tarun Khanna
We demonstrate how a novel synthesis of three methods—(1) unsupervised topic modeling of text data to generate new measures of textual variance, (2) sentiment analysis of text data, and (3) supervised ML coding of facial images with a cutting-edge convolutional neural... View Details
Keywords: Spoken Communication; Business History; Analytics and Data Science; Finance; Performance
Citation
Read Now
Related
Choudhury, Prithwiraj, Dan Wang, Natalie A. Carlson, and Tarun Khanna. "Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles." Harvard Business School Working Paper, No. 18-064, January 2018. (Revised May 2019.)
  • Teaching Interest

Overview

I served as a Teaching Fellow for the Applied Business Analytics second-year MBA course. This course sought to teach MBA students how businesses can improve their strategic decisions using statistics and machine learning techniques. (e.g., regression models, random... View Details
Keywords: Analytics; Machine Learning; Statistics
  • Article

Developing a Digital Mindset: How to Lead Your Organization into the Age of Data, Algorithms, and AI

By: Tsedal Neeley and Paul Leonardi
Learning new technological skills is essential for digital transformation. But it is not enough. Employees must be motivated to use their skills to create new opportunities. They need a digital mindset: a set of attitudes and behaviors that enable people and... View Details
Keywords: Machine Learning; AI; Information Technology; Transformation; Competency and Skills; Employees; Technology Adoption; Leading Change; Digital Transformation
Citation
Find at Harvard
Read Now
Purchase
Related
Neeley, Tsedal, and Paul Leonardi. "Developing a Digital Mindset: How to Lead Your Organization into the Age of Data, Algorithms, and AI." S22032. Harvard Business Review 100, no. 3 (May–June 2022): 50–55.
  • January 2024 (Revised February 2024)
  • Case

Data-Driven Denim: Financial Forecasting at Levi Strauss

By: Mark Egan
The case examines Levi Strauss’ journey in implementing machine learning and AI into its financial forecasting process. The apparel company partnered with the IT company Wipro in 2017 to develop a machine learning algorithm that could help Levi Strauss forecast its... View Details
Keywords: Investor Relations; Forecasting; Machine Learning; Artificial Intelligence; Apparel; Corporate Finance; Forecasting and Prediction; AI and Machine Learning; Digital Transformation; Apparel and Accessories Industry; United States
Citation
Educators
Purchase
Related
Egan, Mark. "Data-Driven Denim: Financial Forecasting at Levi Strauss." Harvard Business School Case 224-029, January 2024. (Revised February 2024.)
  • February 2024
  • Teaching Note

Data-Driven Denim: Financial Forecasting at Levi Strauss

By: Mark Egan
Teaching Note for HBS Case No. 224-029. Levi Strauss & Co. (“Levi Strauss”) partnered with the IT services company Wipro to incorporate more sophisticated methods, such as machine learning, into their financial forecasting process starting in 2018. The decision to... View Details
Keywords: Forecasting; Regression; Machine Learning; Artificial Intelligence; Apparel; Corporate Finance; Forecasting and Prediction; AI and Machine Learning; Apparel and Accessories Industry; United States
Citation
Purchase
Related
Egan, Mark. "Data-Driven Denim: Financial Forecasting at Levi Strauss." Harvard Business School Teaching Note 224-073, February 2024.
  • April 29, 2020
  • Article

The Case for AI Insurance

By: Ram Shankar Siva Kumar and Frank Nagle
When organizations place machine learning systems at the center of their businesses, they introduce the risk of failures that could lead to a data breach, brand damage, property damage, business interruption, and in some cases, bodily harm. Even when companies are... View Details
Keywords: Artificial Intelligence; Machine Learning; Internet and the Web; Safety; Insurance; AI and Machine Learning; Cybersecurity
Citation
Find at Harvard
Register to Read
Related
Kumar, Ram Shankar Siva, and Frank Nagle. "The Case for AI Insurance." Harvard Business Review Digital Articles (April 29, 2020).
  • 2015
  • Article

A Machine Learning Framework to Identify Students at Risk of Adverse Academic Outcomes

By: Himabindu Lakkaraju, Everaldo Aguiar, Carl Shan, David Miller, Nasir Bhanpuri, Rayid Ghani and Kecia Addison
Citation
Read Now
Related
Lakkaraju, Himabindu, Everaldo Aguiar, Carl Shan, David Miller, Nasir Bhanpuri, Rayid Ghani, and Kecia Addison. "A Machine Learning Framework to Identify Students at Risk of Adverse Academic Outcomes." Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining 21st (2015).
  • February 2018 (Revised June 2021)
  • Case

New Constructs: Disrupting Fundamental Analysis with Robo-Analysts

By: Charles C.Y. Wang and Kyle Thomas
This case highlights the business challenges associated with a financial technology firm, New Constructs, that created a technology that can quickly parse complicated public firm financials to paint a clearer economic picture of firms, remove accounting distortions,... View Details
Keywords: Fundamental Analysis; Machine Learning; Robo-analysts; Financial Statements; Financial Reporting; Analysis; Information Technology; Accounting Industry; Financial Services Industry; Information Technology Industry; North America; Tennessee
Citation
Educators
Purchase
Related
Wang, Charles C.Y., and Kyle Thomas. "New Constructs: Disrupting Fundamental Analysis with Robo-Analysts." Harvard Business School Case 118-068, February 2018. (Revised June 2021.)
  • June 2025
  • Case

AI at QuantumBlack: McKinsey’s Open Source Dilemma

By: Frank Nagle, Sam Boysel and Susan Pinckney
In 2019, QuantumBlack by McKinsey considered releasing Kedro, a proprietary machine learning data pipeline tool as an open source software offering. View Details
Keywords: Open Source; Artificial Intelligence; Machine Learning; Business Ventures; Business Growth and Maturation; Business Model; Business Startups; Change Management; Transformation; Customers; Customer Focus and Relationships; Decision Making; Decisions; Digital Strategy; Digital Transformation; Technological Innovation; Intellectual Property; Copyright; Management; Growth and Development Strategy; Markets; Market Timing; Strategy; Competition; AI and Machine Learning; Computer Industry; Consulting Industry
Citation
Educators
Purchase
Related
Nagle, Frank, Sam Boysel, and Susan Pinckney. "AI at QuantumBlack: McKinsey’s Open Source Dilemma." Harvard Business School Case 725-433, June 2025.
  • June 2016 (Revised August 2019)
  • Case

Numenta: Inventing and (or) Commercializing AI

By: David B. Yoffie, Liz Kind and David Ben Shimol
In March 2016, Donna Dubinsky (co-founder and CEO) and Jeff Hawkins (co-founder) were struggling with a key question: Could Numenta be successful in both creating fundamental technology and building a commercial business? Located in Redwood City, CA, Numenta was... View Details
Keywords: Artificial Intelligence; Machine Intelligence; Machine Learning; Strategy; Business Model; Entrepreneurship; Information; Technological Innovation; Research; Research and Development; Information Technology; Applications and Software; Technology Adoption; Digital Platforms; Commercialization; AI and Machine Learning
Citation
Educators
Purchase
Related
Yoffie, David B., Liz Kind, and David Ben Shimol. "Numenta: Inventing and (or) Commercializing AI." Harvard Business School Case 716-469, June 2016. (Revised August 2019.)
  • Article

Towards the Unification and Robustness of Perturbation and Gradient Based Explanations

By: Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu and Himabindu Lakkaraju
As machine learning black boxes are increasingly being deployed in critical domains such as healthcare and criminal justice, there has been a growing emphasis on developing techniques for explaining these black boxes in a post hoc manner. In this work, we analyze two... View Details
Keywords: Machine Learning; Black Box Explanations; Decision Making; Forecasting and Prediction; Information Technology
Citation
Read Now
Related
Agarwal, Sushant, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu, and Himabindu Lakkaraju. "Towards the Unification and Robustness of Perturbation and Gradient Based Explanations." Proceedings of the International Conference on Machine Learning (ICML) 38th (2021).
  • 2021
  • Conference Presentation

An Algorithmic Framework for Fairness Elicitation

By: Christopher Jung, Michael J. Kearns, Seth Neel, Aaron Leon Roth, Logan Stapleton and Zhiwei Steven Wu
We consider settings in which the right notion of fairness is not captured by simple mathematical definitions (such as equality of error rates across groups), but might be more complex and nuanced and thus require elicitation from individual or collective stakeholders.... View Details
Keywords: Algorithmic Fairness; Machine Learning; Fairness; Framework; Mathematical Methods
Citation
Read Now
Related
Jung, Christopher, Michael J. Kearns, Seth Neel, Aaron Leon Roth, Logan Stapleton, and Zhiwei Steven Wu. "An Algorithmic Framework for Fairness Elicitation." Paper presented at the 2nd Symposium on Foundations of Responsible Computing (FORC), 2021.
  • Article

Robust and Stable Black Box Explanations

By: Himabindu Lakkaraju, Nino Arsov and Osbert Bastani
As machine learning black boxes are increasingly being deployed in real-world applications, there has been a growing interest in developing post hoc explanations that summarize the behaviors of these black boxes. However, existing algorithms for generating such... View Details
Keywords: Machine Learning; Black Box Models; Framework
Citation
Read Now
Related
Lakkaraju, Himabindu, Nino Arsov, and Osbert Bastani. "Robust and Stable Black Box Explanations." Proceedings of the International Conference on Machine Learning (ICML) 37th (2020): 5628–5638. (Published in PMLR, Vol. 119.)
  • February 2019
  • Case

Miroglio Fashion (A)

By: Sunil Gupta and David Lane
Francesco Cavarero, chief information officer of Miroglio Fashion, Italy’s third-largest retailer of women’s apparel, was trying to bring analytical rigor to the company’s forecasting and inventory management decisions. But fashion is inherently hard to predict. Can... View Details
Keywords: Inventory Management; Demand Forecasting; Artificial Intelligence; Machine Learning; Forecasting and Prediction; Operations; Management; Decision Making; AI and Machine Learning; Apparel and Accessories Industry; Fashion Industry
Citation
Educators
Purchase
Related
Gupta, Sunil, and David Lane. "Miroglio Fashion (A)." Harvard Business School Case 519-053, February 2019.
  • 18 Apr 2000
  • Research & Ideas

Learning in Action

"The most effective learning strategy depends on the situation," writes David A. Garvin. "There is no stock answer, nor is there a single best approach." In Learning in Action, he illustrated the diversity... View Details
Keywords: by David A. Garvin
  • Mar 2020
  • Conference Presentation

A New Analysis of Differential Privacy's Generalization Guarantees

By: Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi and Moshe Shenfeld
We give a new proof of the "transfer theorem" underlying adaptive data analysis: that any mechanism for answering adaptively chosen statistical queries that is differentially private and sample-accurate is also accurate out-of-sample. Our new proof is elementary and... View Details
Keywords: Machine Learning; Transfer Theorem; Mathematical Methods
Citation
Read Now
Related
Jung, Christopher, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe Shenfeld. "A New Analysis of Differential Privacy's Generalization Guarantees." Paper presented at the 11th Innovations in Theoretical Computer Science Conference, Seattle, March 2020.
  • 2022
  • Article

Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis.

By: Martin Pawelczyk, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay and Himabindu Lakkaraju
As machine learning (ML) models become more widely deployed in high-stakes applications, counterfactual explanations have emerged as key tools for providing actionable model explanations in practice. Despite the growing popularity of counterfactual explanations, a... View Details
Keywords: Machine Learning Models; Counterfactual Explanations; Adversarial Examples; Mathematical Methods
Citation
Read Now
Related
Pawelczyk, Martin, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay, and Himabindu Lakkaraju. "Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
  • Article

Oracle Efficient Private Non-Convex Optimization

By: Seth Neel, Aaron Leon Roth, Giuseppe Vietri and Zhiwei Steven Wu
One of the most effective algorithms for differentially private learning and optimization is objective perturbation. This technique augments a given optimization problem (e.g. deriving from an ERM problem) with a random linear term, and then exactly solves it.... View Details
Keywords: Machine Learning; Algorithms; Objective Perturbation; Mathematical Methods
Citation
Read Now
Related
Neel, Seth, Aaron Leon Roth, Giuseppe Vietri, and Zhiwei Steven Wu. "Oracle Efficient Private Non-Convex Optimization." Proceedings of the International Conference on Machine Learning (ICML) 37th (2020).
  • April 2024
  • Article

Detecting Routines: Applications to Ridesharing CRM

By: Ryan Dew, Eva Ascarza, Oded Netzer and Nachum Sicherman
Routines shape many aspects of day-to-day consumption. While prior work has established the importance of habits in consumer behavior, little work has been done to understand the implications of routines—which we define as repeated behaviors with recurring, temporal... View Details
Keywords: Ride-sharing; Routine; Machine Learning; Customer Relationship Management; Consumer Behavior; Segmentation
Citation
Find at Harvard
Purchase
Related
Dew, Ryan, Eva Ascarza, Oded Netzer, and Nachum Sicherman. "Detecting Routines: Applications to Ridesharing CRM." Journal of Marketing Research (JMR) 61, no. 2 (April 2024): 368–392.
  • ←
  • 4
  • 5
  • …
  • 32
  • 33
  • →

Are you looking for?

→Search All HBS Web
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.