Filter Results:
(981)
Show Results For
- All HBS Web
(981)
- People (1)
- News (155)
- Research (655)
- Events (13)
- Multimedia (3)
- Faculty Publications (562)
Show Results For
- All HBS Web
(981)
- People (1)
- News (155)
- Research (655)
- Events (13)
- Multimedia (3)
- Faculty Publications (562)
- May 2022
- Supplement
Borusan CAT: Monetizing Prediction in the Age of AI (B)
By: Navid Mojir and Gamze Yucaoglu
Borusan Cat is an international distributor of Caterpillar heavy machines. In 2021, it had been three years since Ozgur Gunaydin (CEO) and Esra Durgun (Director of Strategy, Digitization, and Innovation) started working on Muneccim, the company’s predictive AI tool.... View Details
Keywords: AI and Machine Learning; Commercialization; Technology Adoption; Industrial Products Industry; Turkey; Middle East
Mojir, Navid, and Gamze Yucaoglu. "Borusan CAT: Monetizing Prediction in the Age of AI (B)." Harvard Business School Supplement 522-045, May 2022.
- October 14, 2023
- Article
Will Consumers Buy Selfish Self-Driving Cars?
De Freitas, Julian. "Will Consumers Buy Selfish Self-Driving Cars?" Wall Street Journal (October 14, 2023), C5.
- 2025
- Article
Humor as a Window into Generative AI Bias
By: Roger Samure, Julian De Freitas and Stefano Puntoni
A preregistered audit of 600 images by generative AI across 150 different prompts explores the link between humor and discrimination in consumer-facing AI solutions. When ChatGPT updates images to make them “funnier”, the prevalence of stereotyped groups changes. While... View Details
Samure, Roger, Julian De Freitas, and Stefano Puntoni. "Humor as a Window into Generative AI Bias." Art. 1326. Scientific Reports 15 (2025).
- 2025
- Working Paper
The Impact of Input Inaccuracy on Leveraging AI Tools: Evidence from Algorithmic Labor Scheduling
By: Caleb Kwon, Antonio Moreno and Ananth Raman
Problem Definition: Considerable academic and practitioner attention is placed on the value of ex-post interactions (i.e., overrides) in the human-AI interface. In contrast, relatively little attention has been paid to ex-ante human-AI interactions (e.g., the... View Details
Kwon, Caleb, Antonio Moreno, and Ananth Raman. "The Impact of Input Inaccuracy on Leveraging AI Tools: Evidence from Algorithmic Labor Scheduling." Working Paper, January 2025.
- June 20, 2023
- Article
Cautious Adoption of AI Can Create Positive Company Culture
By: Joseph Pacelli and Jonas Heese
Pacelli, Joseph, and Jonas Heese. "Cautious Adoption of AI Can Create Positive Company Culture." CMR Insights (June 20, 2023).
- January–February 2025
- Article
Why People Resist Embracing AI
The success of AI depends not only on its capabilities, which are becoming more advanced each day, but on people’s willingness to harness them. Unfortunately, many people view AI negatively, fearing it will cause job losses, increase the likelihood that their personal... View Details
De Freitas, Julian. "Why People Resist Embracing AI." Harvard Business Review 103, no. 1 (January–February 2025): 52–56.
- 2025
- Working Paper
Narrative AI and the Human-AI Oversight Paradox in Evaluating Early-Stage Innovations
By: Jacqueline N. Lane, Léonard Boussioux, Charles Ayoubi, Ying Hao Chen, Camila Lin, Rebecca Spens, Pooja Wagh and Pei-Hsin Wang
Do AI-generated narrative explanations enhance human oversight or diminish it? We investigate this question through a field experiment with 228 evaluators screening 48 early-stage innovations under three conditions: human-only, black-box AI recommendations without... View Details
Lane, Jacqueline N., Léonard Boussioux, Charles Ayoubi, Ying Hao Chen, Camila Lin, Rebecca Spens, Pooja Wagh, and Pei-Hsin Wang. "Narrative AI and the Human-AI Oversight Paradox in Evaluating Early-Stage Innovations." Harvard Business School Working Paper, No. 25-001, August 2024. (Revised May 2025.)
- July 2025
- Case
The Future in Sight: LumineticsCore and the First Autonomous AI for Diagnostics
By: Michael Lingzhi Li and Tinglong Dai
After two decades of research, Dr. Michael Abramoff successfully launched LumineticsCore—the first autonomous AI system authorized by the FDA to diagnose diabetic retinopathy without physician oversight. The case traces his journey across algorithm design, clinical... View Details
- July 2024
- Case
The Voice Wars Continues 2024: Hey Google vs. Alexa vs. Siri vs. ChatGPT
By: David B. Yoffie and Sarah von Bargen
In 2024, the Voice War was transforming from a relatively simple index-based technology system, which relied on a list of commands and answers, to a generative AI system, which offered the promise to enable free flowing conversations between people and machines. The... View Details
Yoffie, David B., and Sarah von Bargen. "The Voice Wars Continues 2024: Hey Google vs. Alexa vs. Siri vs. ChatGPT." Harvard Business School Case 725-352, July 2024.
- January 2024
- Case
The Financial Times (FT) and Generative AI
By: Andrew Rashbass, Ramon Casadesus-Masanell and Jordan Mitchell
In September 2023, John Ridding, CEO of the Financial Times, was considering the possible impact of Generative AI on the industry and his business. Having navigated successfully the seismic shift from print to digital, and reporting record results, the company... View Details
Keywords: AI and Machine Learning; Technology Adoption; Change Management; Journalism and News Industry
Rashbass, Andrew, Ramon Casadesus-Masanell, and Jordan Mitchell. "The Financial Times (FT) and Generative AI." Harvard Business School Case 724-410, January 2024.
- 2023
- Article
Benchmarking Large Language Models on CMExam—A Comprehensive Chinese Medical Exam Dataset
By: Junling Liu, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin Wang, Chenyu You, Zhenhua Guo, Lei Zhu and Michael Lingzhi Li
Recent advancements in large language models (LLMs) have transformed the field of question answering (QA). However, evaluating LLMs in the medical field is challenging due to the lack of standardized and comprehensive datasets. To address this gap, we introduce CMExam,... View Details
Keywords: Large Language Model; AI and Machine Learning; Analytics and Data Science; Health Industry
Liu, Junling, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin Wang, Chenyu You, Zhenhua Guo, Lei Zhu, and Michael Lingzhi Li. "Benchmarking Large Language Models on CMExam—A Comprehensive Chinese Medical Exam Dataset." Conference on Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks Track 36 (2023).
- 11 Oct 2024
- Research & Ideas
How AI Could Ease the Refugee Crisis and Bring New Talent to Businesses
says. “What we’re asking is, can we build algorithms that will help find better matches that will allow people to integrate more easily?” The paper presents data from Switzerland and the United States that showed promise in using machine... View Details
- 2023
- Article
On the Impact of Actionable Explanations on Social Segregation
By: Ruijiang Gao and Himabindu Lakkaraju
As predictive models seep into several real-world applications, it has become critical to ensure that individuals who are negatively impacted by the outcomes of these models are provided with a means for recourse. To this end, there has been a growing body of research... View Details
Gao, Ruijiang, and Himabindu Lakkaraju. "On the Impact of Actionable Explanations on Social Segregation." Proceedings of the International Conference on Machine Learning (ICML) 40th (2023): 10727–10743.
- May 2020
- Case
Numenta in 2020: The Future of AI
By: David B. Yoffie, Cameron Armstrong, Mei Tao and Marta Zwierz
In 2020, Numenta’s co-founder, Jeff Hawkins, completed his pathbreaking research on artificial intelligence. His co-founder and CEO, Donna Dubinsky, had to find a business model to monetize the technology. This case explores the challenges of building a business... View Details
Keywords: Artificial Intelligence; Monetization; Information Technology; Strategy; Intellectual Property; Business Model; AI and Machine Learning; Technology Industry
Yoffie, David B., Cameron Armstrong, Mei Tao, and Marta Zwierz. "Numenta in 2020: The Future of AI." Harvard Business School Case 720-463, May 2020.
- 2025
- Working Paper
Generative AI Use by Capital Market Information Intermediaries: Evidence from Seeking Alpha
By: Mark Bradshaw, Chenyang Ma, Benjamin Yost and Yuan Zou
We study the use of generative AI for firm-specific financial analysis on the Seeking Alpha platform. We find that, after the initial launch of ChatGPT in November 2022, the share of AI-generated articles rose sharply to 13.4% of all articles, then declined in late... View Details
Keywords: Generative Ai; Seeking Alpha; Equity Research; Large Language Models; Gpt; AI and Machine Learning; Information Publishing; Financial Markets
Bradshaw, Mark, Chenyang Ma, Benjamin Yost, and Yuan Zou. "Generative AI Use by Capital Market Information Intermediaries: Evidence from Seeking Alpha." Harvard Business School Working Paper, No. 25-055, April 2025.
- August 2022 (Revised January 2023)
- Case
Icario Health: AI to Drive Health Engagement
By: David C. Edelman
Icario Health has built a market-leading artificial intelligence (AI) engine to help health insurers drive better health behaviors for their members, enabling the insurers to improve their Medicare performance. View Details
Keywords: Marketing; Health Care and Treatment; AI and Machine Learning; Health Industry; United States
Edelman, David C. "Icario Health: AI to Drive Health Engagement." Harvard Business School Case 523-025, August 2022. (Revised January 2023.)
- September–October 2024
- Article
The Crowdless Future? Generative AI and Creative Problem-Solving
The rapid advances in generative artificial intelligence (AI) open up attractive opportunities for creative problem-solving through human-guided AI partnerships. To explore this potential, we initiated a crowdsourcing challenge focused on sustainable, circular economy... View Details
Keywords: Large Language Models; Generative Ai; Crowdsourcing; AI and Machine Learning; Creativity; Technological Innovation
Boussioux, Léonard, Jacqueline N. Lane, Miaomiao Zhang, Vladimir Jacimovic, and Karim R. Lakhani. "The Crowdless Future? Generative AI and Creative Problem-Solving." Organization Science 35, no. 5 (September–October 2024): 1589–1607.
- 2024
- Case
EPCorp: Convincing the C-Suite
By: Jacob M. Cook
In EPCorp: Convincing the C-Suite, Shivani Bahl is attempting to sell EPCorp's CEO, Debbie Sullivan, on her ideas for not only a new website upgrade but also a more expansive vision on how data and Generative AI can be used to grow the company. Debbie is understandably... View Details
Cook, Jacob M. "EPCorp: Convincing the C-Suite." Harvard Business Publishing Case, 2024. (Quick Case.)
- September 2024
- Background Note
Copyright and Fair Use
By: David B. Yoffie
The U.S. Copyright Office defines a copyright as “a type of intellectual property that protects original works of authorship as soon as an author fixes the work in a tangible form of expression.” Two core principles of copyright are originality and fixation. A work is... View Details
Yoffie, David B. "Copyright and Fair Use." Harvard Business School Background Note 725-394, September 2024.
- 2022
- Working Paper
The Evolution of ESG Reports and the Role of Voluntary Standards
By: Ethan Rouen, Kunal Sachdeva and Aaron Yoon
We examine the evolution of ESG reports of S&P 500 firms from 2010 to 2021. The
percentage of firms releasing these voluntary disclosures increased from 35% to 86%
during this period, although the length of these documents experienced more modest
growth. Using a... View Details
Keywords: Voluntary Disclosure; Textual Analysis; Modeling And Analysis; Corporate Social Responsibility and Impact; AI and Machine Learning; Accounting
Rouen, Ethan, Kunal Sachdeva, and Aaron Yoon. "The Evolution of ESG Reports and the Role of Voluntary Standards." Harvard Business School Working Paper, No. 23-024, October 2022.