Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (950) Arrow Down
Filter Results: (950) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (950)
    • People  (1)
    • News  (155)
    • Research  (631)
    • Events  (13)
    • Multimedia  (3)
  • Faculty Publications  (538)

Show Results For

  • All HBS Web  (950)
    • People  (1)
    • News  (155)
    • Research  (631)
    • Events  (13)
    • Multimedia  (3)
  • Faculty Publications  (538)
← Page 27 of 950 Results →
  • April 2023
  • Article

On the Privacy Risks of Algorithmic Recourse

By: Martin Pawelczyk, Himabindu Lakkaraju and Seth Neel
As predictive models are increasingly being employed to make consequential decisions, there is a growing emphasis on developing techniques that can provide algorithmic recourse to affected individuals. While such recourses can be immensely beneficial to affected... View Details
Keywords: Recourse; Privacy Threats; AI and Machine Learning; Information
Citation
Read Now
Related
Pawelczyk, Martin, Himabindu Lakkaraju, and Seth Neel. "On the Privacy Risks of Algorithmic Recourse." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 206 (April 2023).
  • 2024
  • Working Paper

Warnings and Endorsements: Improving Human-AI Collaboration Under Covariate Shift

By: Matthew DosSantos DiSorbo and Kris Ferreira
Problem definition: While artificial intelligence (AI) algorithms may perform well on data that are representative of the training set (inliers), they may err when extrapolating on non-representative data (outliers). These outliers often originate from covariate shift,... View Details
Keywords: AI and Machine Learning; Decision Choices and Conditions
Citation
Read Now
Related
DosSantos DiSorbo, Matthew, and Kris Ferreira. "Warnings and Endorsements: Improving Human-AI Collaboration Under Covariate Shift." Working Paper, February 2024.
  • 2023
  • Article

Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators

By: Benjamin Jakubowski, Siram Somanchi, Edward McFowland III and Daniel B. Neill
Regression discontinuity (RD) designs are widely used to estimate causal effects in the absence of a randomized experiment. However, standard approaches to RD analysis face two significant limitations. First, they require a priori knowledge of discontinuities in... View Details
Keywords: Regression Discontinuity Design; Analytics and Data Science; AI and Machine Learning
Citation
Read Now
Related
Jakubowski, Benjamin, Siram Somanchi, Edward McFowland III, and Daniel B. Neill. "Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators." Journal of Machine Learning Research 24, no. 133 (2023): 1–57.
  • May 2022
  • Supplement

Borusan CAT: Monetizing Prediction in the Age of AI (B)

By: Navid Mojir and Gamze Yucaoglu
Borusan Cat is an international distributor of Caterpillar heavy machines. In 2021, it had been three years since Ozgur Gunaydin (CEO) and Esra Durgun (Director of Strategy, Digitization, and Innovation) started working on Muneccim, the company’s predictive AI tool.... View Details
Keywords: AI and Machine Learning; Commercialization; Technology Adoption; Industrial Products Industry; Turkey; Middle East
Citation
Purchase
Related
Mojir, Navid, and Gamze Yucaoglu. "Borusan CAT: Monetizing Prediction in the Age of AI (B)." Harvard Business School Supplement 522-045, May 2022.
  • December 18, 2024
  • Article

Is AI the Right Tool to Solve That Problem?

By: Paolo Cervini, Chiara Farronato, Pushmeet Kohli and Marshall W Van Alstyne
While AI has the potential to solve major problems, organizations embarking on such journeys of often encounter obstacles. They include a dearth of high-quality data; too many possible solutions; the lack of a clear, measurable objective; and difficulty in identifying... View Details
Keywords: Artificial Intelligence; AI and Machine Learning; Problems and Challenges
Citation
Register to Read
Related
Cervini, Paolo, Chiara Farronato, Pushmeet Kohli, and Marshall W Van Alstyne. "Is AI the Right Tool to Solve That Problem?" Harvard Business Review (website) (December 18, 2024).
  • March 2024
  • Exercise

'Storrowed': A Generative AI Exercise

By: Mitchell Weiss
"Storrowed" is an exercise to help participants raise their capacity and curiosity for generative AI. It focuses on generative AI for problem understanding and ideation, but can be adapted for use more broadly. Participants use generative AI tools to understand a... View Details
Keywords: AI and Machine Learning; Problems and Challenges
Citation
Purchase
Related
Weiss, Mitchell. "'Storrowed': A Generative AI Exercise." Harvard Business School Exercise 824-188, March 2024.
  • Winter 2021
  • Editorial

Introduction

By: Michael A. Wheeler
This issue of Negotiation Journal is dedicated to the theme of artificial intelligence, technology, and negotiation. It arose from a Program on Negotiation (PON) working conference on that important topic held virtually on May 17–18. The conference was not the... View Details
Keywords: Artificial Intelligence; Information Technology; Negotiation; AI and Machine Learning
Citation
Find at Harvard
Related
Wheeler, Michael A. "Introduction." Special Issue on Artificial Intelligence, Technology, and Negotiation. Negotiation Journal 37, no. 1 (Winter 2021): 5–12.
  • January–February 2025
  • Article

Why People Resist Embracing AI

By: Julian De Freitas
The success of AI depends not only on its capabilities, which are becoming more advanced each day, but on people’s willingness to harness them. Unfortunately, many people view AI negatively, fearing it will cause job losses, increase the likelihood that their personal... View Details
Keywords: AI and Machine Learning; Technology Adoption; Perception
Citation
Find at Harvard
Read Now
Related
De Freitas, Julian. "Why People Resist Embracing AI." Harvard Business Review 103, no. 1 (January–February 2025): 52–56.
  • September 23, 2024
  • Article

AI Wants to Make You Less Lonely. Does It Work?

By: Julian De Freitas
Keywords: AI and Machine Learning; Well-being
Citation
Find at Harvard
Read Now
Related
De Freitas, Julian. "AI Wants to Make You Less Lonely. Does It Work?" Wall Street Journal (September 23, 2024), R.11.
  • 2023
  • Working Paper

Distributionally Robust Causal Inference with Observational Data

By: Dimitris Bertsimas, Kosuke Imai and Michael Lingzhi Li
We consider the estimation of average treatment effects in observational studies and propose a new framework of robust causal inference with unobserved confounders. Our approach is based on distributionally robust optimization and proceeds in two steps. We first... View Details
Keywords: AI and Machine Learning; Mathematical Methods
Citation
Read Now
Related
Bertsimas, Dimitris, Kosuke Imai, and Michael Lingzhi Li. "Distributionally Robust Causal Inference with Observational Data." Working Paper, February 2023.
  • 2023
  • Article

MoPe: Model Perturbation-based Privacy Attacks on Language Models

By: Marvin Li, Jason Wang, Jeffrey Wang and Seth Neel
Recent work has shown that Large Language Models (LLMs) can unintentionally leak sensitive information present in their training data. In this paper, we present Model Perturbations (MoPe), a new method to identify with high confidence if a given text is in the training... View Details
Keywords: Large Language Model; AI and Machine Learning; Cybersecurity
Citation
Read Now
Related
Li, Marvin, Jason Wang, Jeffrey Wang, and Seth Neel. "MoPe: Model Perturbation-based Privacy Attacks on Language Models." Proceedings of the Conference on Empirical Methods in Natural Language Processing (2023): 13647–13660.
  • 2023
  • Article

Which Models Have Perceptually-Aligned Gradients? An Explanation via Off-Manifold Robustness

By: Suraj Srinivas, Sebastian Bordt and Himabindu Lakkaraju
One of the remarkable properties of robust computer vision models is that their input-gradients are often aligned with human perception, referred to in the literature as perceptually-aligned gradients (PAGs). Despite only being trained for classification, PAGs cause... View Details
Keywords: AI and Machine Learning; Mathematical Methods
Citation
Read Now
Related
Srinivas, Suraj, Sebastian Bordt, and Himabindu Lakkaraju. "Which Models Have Perceptually-Aligned Gradients? An Explanation via Off-Manifold Robustness." Advances in Neural Information Processing Systems (NeurIPS) (2023).
  • 8 Sep 2023
  • Conference Presentation

Chatbots and Mental Health: Insights into the Safety of Generative AI

By: Julian De Freitas, K. Uguralp, Z. Uguralp and Stefano Puntoni
Keywords: AI and Machine Learning; Well-being
Citation
Related
De Freitas, Julian, K. Uguralp, Z. Uguralp, and Stefano Puntoni. "Chatbots and Mental Health: Insights into the Safety of Generative AI." Paper presented at the Business & Generative AI Workshop, Wharton School, AI at Wharton, San Francisco, CA, United States, September 8, 2023.
  • Article

Why Boards Aren't Dealing with Cyberthreats

By: J. Yo-Jud Cheng and Boris Groysberg
Keywords: Board Of Directors; Cybersecurity; Corporate Governance; AI and Machine Learning
Citation
Register to Read
Related
Cheng, J. Yo-Jud, and Boris Groysberg. "Why Boards Aren't Dealing with Cyberthreats." Harvard Business Review (website) (February 22, 2017). (Excerpt featured in the Harvard Business Review. May–June 2017 "Idea Watch" section.)
  • February 2024
  • Technical Note

AI Product Development Lifecycle

By: Michael Parzen, Jessie Li and Marily Nika
In this article, we will discuss the concept of AI Products, how they are changing our daily lives, how the field of AI & Product Management is evolving, and the AI Product Development Lifecycle. View Details
Keywords: Artificial Intelligence; Product Management; Product Life Cycle; Technology; AI and Machine Learning; Product Development
Citation
Educators
Purchase
Related
Parzen, Michael, Jessie Li, and Marily Nika. "AI Product Development Lifecycle." Harvard Business School Technical Note 624-070, February 2024.
  • 2023
  • Article

On the Impact of Actionable Explanations on Social Segregation

By: Ruijiang Gao and Himabindu Lakkaraju
As predictive models seep into several real-world applications, it has become critical to ensure that individuals who are negatively impacted by the outcomes of these models are provided with a means for recourse. To this end, there has been a growing body of research... View Details
Keywords: Forecasting and Prediction; AI and Machine Learning; Outcome or Result
Citation
Read Now
Related
Gao, Ruijiang, and Himabindu Lakkaraju. "On the Impact of Actionable Explanations on Social Segregation." Proceedings of the International Conference on Machine Learning (ICML) 40th (2023): 10727–10743.
  • 2024
  • Working Paper

Displacement or Complementarity? The Labor Market Impact of Generative AI

By: Wilbur Xinyuan Chen, Suraj Srinivasan and Saleh Zakerinia
Generative AI is poised to reshape the labor market, affecting cognitive and white-collar occupations in ways distinct from past technological revolutions. This study examines whether generative AI displaces workers or augments their jobs by analyzing labor demand and... View Details
Keywords: Generative Ai; Labor Market; Automation And Augmentation; Labor; AI and Machine Learning; Competency and Skills
Citation
Read Now
Related
Chen, Wilbur Xinyuan, Suraj Srinivasan, and Saleh Zakerinia. "Displacement or Complementarity? The Labor Market Impact of Generative AI." Harvard Business School Working Paper, No. 25-039, December 2024.
  • 05 Nov 2024
  • Research & Ideas

AI Can Help Leaders Communicate, But Can't Make Employees Listen

It's an AI-age twist on the classic Turing Test, developed by British computer scientist Alan Turing in 1950 to judge whether machines could exhibit “intelligence.” Called the “Wade Test,” after the CEO of the company the researchers... View Details
Keywords: by Ben Rand; Information Technology; Technology
  • October 31, 2022
  • Article

Achieving Individual—and Organizational—Value with AI

By: Sam Ransbotham, David Kiron, François Candelon, Shervin Khodabandeh and Michael Chu
New research shows that employees derive individual value from AI when using the technology improves their sense of competency, autonomy, and relatedness. Likewise, organizations are far more likely to obtain value from AI when their workers do. This report offers key... View Details
Keywords: AI and Machine Learning; Value; Competency and Skills
Citation
Register to Read
Related
Ransbotham, Sam, David Kiron, François Candelon, Shervin Khodabandeh, and Michael Chu. "Achieving Individual—and Organizational—Value with AI." MIT Sloan Management Review, Big Ideas Artificial Intelligence and Business Strategy Initiative (website) (October 31, 2022). (Findings from the 2022 Artificial Intelligence and Business Strategy Global Executive Study and Research Project.)
  • September 29, 2023
  • Article

Eliminating Algorithmic Bias Is Just the Beginning of Equitable AI

By: Simon Friis and James Riley
When it comes to artificial intelligence and inequality, algorithmic bias rightly receives a lot of attention. But it’s just one way that AI can lead to inequitable outcomes. To truly create equitable AI, we need to consider three forces through which it might make... View Details
Keywords: AI and Machine Learning; Prejudice and Bias; Equality and Inequality
Citation
Find at Harvard
Register to Read
Related
Friis, Simon, and James Riley. "Eliminating Algorithmic Bias Is Just the Beginning of Equitable AI." Harvard Business Review (website) (September 29, 2023).
  • ←
  • 27
  • 28
  • …
  • 47
  • 48
  • →
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.