Filter Results:
(978)
Show Results For
- All HBS Web
(978)
- People (1)
- News (187)
- Research (622)
- Events (11)
- Multimedia (3)
- Faculty Publications (498)
Show Results For
- All HBS Web
(978)
- People (1)
- News (187)
- Research (622)
- Events (11)
- Multimedia (3)
- Faculty Publications (498)
- 2023
- Article
M4: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities, and Models
By: Himabindu Lakkaraju, Xuhong Li, Mengnan Du, Jiamin Chen, Yekun Chai and Haoyi Xiong
While Explainable Artificial Intelligence (XAI) techniques have been widely studied to explain predictions made by deep neural networks, the way to evaluate the faithfulness of explanation results remains challenging, due to the heterogeneity of explanations for... View Details
Keywords: AI and Machine Learning
Lakkaraju, Himabindu, Xuhong Li, Mengnan Du, Jiamin Chen, Yekun Chai, and Haoyi Xiong. "M4: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities, and Models." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- 2023
- Working Paper
Auditing Predictive Models for Intersectional Biases
By: Kate S. Boxer, Edward McFowland III and Daniel B. Neill
Predictive models that satisfy group fairness criteria in aggregate for members of a protected class, but do not guarantee subgroup fairness, could produce biased predictions for individuals at the intersection of two or more protected classes. To address this risk, we... View Details
Boxer, Kate S., Edward McFowland III, and Daniel B. Neill. "Auditing Predictive Models for Intersectional Biases." Working Paper, June 2023.
- March 2017
- Supplement
Donna Dubinsky, Numenta and Artificial Intelligence
By: David B. Yoffie
Donna Dubinsky, CEO of Numenta, discusses her views of the future of artificial intelligence and the strategic challenges of building a new platform. View Details
Keywords: Artificial Intelligence; Strategy; Technological Change; AI and Machine Learning; Technology Industry
Yoffie, David B. "Donna Dubinsky, Numenta and Artificial Intelligence." Harvard Business School Multimedia/Video Supplement 717-807, March 2017.
- 2024
- Conference Paper
Quantifying Uncertainty in Natural Language Explanations of Large Language Models
By: Himabindu Lakkaraju, Sree Harsha Tanneru and Chirag Agarwal
Large Language Models (LLMs) are increasingly used as powerful tools for several
high-stakes natural language processing (NLP) applications. Recent prompting
works claim to elicit intermediate reasoning steps and key tokens that serve as
proxy explanations for LLM... View Details
Lakkaraju, Himabindu, Sree Harsha Tanneru, and Chirag Agarwal. "Quantifying Uncertainty in Natural Language Explanations of Large Language Models." Paper presented at the Society for Artificial Intelligence and Statistics, 2024.
- 2022
- Article
Efficiently Training Low-Curvature Neural Networks
By: Suraj Srinivas, Kyle Matoba, Himabindu Lakkaraju and Francois Fleuret
Standard deep neural networks often have excess non-linearity, making them susceptible to issues such as low adversarial robustness and gradient instability. Common methods to address these downstream issues, such as adversarial training, are expensive and often... View Details
Keywords: AI and Machine Learning
Srinivas, Suraj, Kyle Matoba, Himabindu Lakkaraju, and Francois Fleuret. "Efficiently Training Low-Curvature Neural Networks." Advances in Neural Information Processing Systems (NeurIPS) (2022).
- Web
Data Tips & Toolkits - Research Computing Services
supervised machine learning problems: it provides a uniform interface to a ton of machine learning algorithms. If... View Details
- December 18, 2024
- Article
Is AI the Right Tool to Solve That Problem?
By: Paolo Cervini, Chiara Farronato, Pushmeet Kohli and Marshall W Van Alstyne
While AI has the potential to solve major problems, organizations embarking on such journeys of often encounter obstacles. They include a dearth of high-quality data; too many possible solutions; the lack of a clear, measurable objective; and difficulty in identifying... View Details
Cervini, Paolo, Chiara Farronato, Pushmeet Kohli, and Marshall W Van Alstyne. "Is AI the Right Tool to Solve That Problem?" Harvard Business Review (website) (December 18, 2024).
- March 2024
- Exercise
'Storrowed': A Generative AI Exercise
By: Mitchell Weiss
"Storrowed" is an exercise to help participants raise their capacity and curiosity for generative AI. It focuses on generative AI for problem understanding and ideation, but can be adapted for use more broadly. Participants use generative AI tools to understand a... View Details
Weiss, Mitchell. "'Storrowed': A Generative AI Exercise." Harvard Business School Exercise 824-188, March 2024.
- Winter 2021
- Editorial
Introduction
This issue of Negotiation Journal is dedicated to the theme of artificial intelligence, technology, and negotiation. It arose from a Program on Negotiation (PON) working conference on that important topic held virtually on May 17–18. The conference was not the... View Details
Wheeler, Michael A. "Introduction." Special Issue on Artificial Intelligence, Technology, and Negotiation. Negotiation Journal 37, no. 1 (Winter 2021): 5–12.
- April 2023
- Article
On the Privacy Risks of Algorithmic Recourse
By: Martin Pawelczyk, Himabindu Lakkaraju and Seth Neel
As predictive models are increasingly being employed to make consequential decisions, there is a growing emphasis on developing techniques that can provide algorithmic recourse to affected individuals. While such recourses can be immensely beneficial to affected... View Details
Pawelczyk, Martin, Himabindu Lakkaraju, and Seth Neel. "On the Privacy Risks of Algorithmic Recourse." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 206 (April 2023).
- February 2024
- Technical Note
AI Product Development Lifecycle
By: Michael Parzen, Jessie Li and Marily Nika
In this article, we will discuss the concept of AI Products, how they are changing our daily lives, how the field of AI & Product Management is evolving, and the AI Product Development Lifecycle. View Details
Keywords: Artificial Intelligence; Product Management; Product Life Cycle; Technology; AI and Machine Learning; Product Development
Parzen, Michael, Jessie Li, and Marily Nika. "AI Product Development Lifecycle." Harvard Business School Technical Note 624-070, February 2024.
- September 23, 2024
- Article
AI Wants to Make You Less Lonely. Does It Work?
De Freitas, Julian. "AI Wants to Make You Less Lonely. Does It Work?" Wall Street Journal (September 23, 2024), R.11.
- 2023
- Working Paper
Distributionally Robust Causal Inference with Observational Data
By: Dimitris Bertsimas, Kosuke Imai and Michael Lingzhi Li
We consider the estimation of average treatment effects in observational studies and propose a new framework of robust causal inference with unobserved confounders. Our approach is based on distributionally robust optimization and proceeds in two steps. We first... View Details
Bertsimas, Dimitris, Kosuke Imai, and Michael Lingzhi Li. "Distributionally Robust Causal Inference with Observational Data." Working Paper, February 2023.
- 2023
- Article
Benchmarking Large Language Models on CMExam—A Comprehensive Chinese Medical Exam Dataset
By: Junling Liu, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin Wang, Chenyu You, Zhenhua Guo, Lei Zhu and Michael Lingzhi Li
Recent advancements in large language models (LLMs) have transformed the field of question answering (QA). However, evaluating LLMs in the medical field is challenging due to the lack of standardized and comprehensive datasets. To address this gap, we introduce CMExam,... View Details
Keywords: Large Language Model; AI and Machine Learning; Analytics and Data Science; Health Industry
Liu, Junling, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin Wang, Chenyu You, Zhenhua Guo, Lei Zhu, and Michael Lingzhi Li. "Benchmarking Large Language Models on CMExam—A Comprehensive Chinese Medical Exam Dataset." Conference on Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks Track 36 (2023).
- 2022
- Working Paper
The Evolution of ESG Reports and the Role of Voluntary Standards
By: Ethan Rouen, Kunal Sachdeva and Aaron Yoon
We examine the evolution of ESG reports of S&P 500 firms from 2010 to 2021. The
percentage of firms releasing these voluntary disclosures increased from 35% to 86%
during this period, although the length of these documents experienced more modest
growth. Using a... View Details
Keywords: Voluntary Disclosure; Textual Analysis; Modeling And Analysis; Corporate Social Responsibility and Impact; AI and Machine Learning; Accounting
Rouen, Ethan, Kunal Sachdeva, and Aaron Yoon. "The Evolution of ESG Reports and the Role of Voluntary Standards." Harvard Business School Working Paper, No. 23-024, October 2022.
- August 25, 2022
- Article
Find the Right Pace for Your AI Rollout
By: Rebecca Karp and Aticus Peterson
Implementing AI can introduce disruptive change and disfranchise staff and employees. When members are reluctant to adopt a new technology, they might hesitate to use it, push back against its deployment, or use it in limited capacity — which affects the benefits an... View Details
Karp, Rebecca, and Aticus Peterson. "Find the Right Pace for Your AI Rollout." Harvard Business Review Digital Articles (August 25, 2022).
- Article
Fake AI People Won't Fix Online Dating
Computer-generated images may inspire even more distrust and surely won’t lead to the love of a lifetime. View Details
Keywords: Artificial Intelligence; Dating Services; Internet and the Web; Ethics; AI and Machine Learning
Kominers, Scott Duke. "Fake AI People Won't Fix Online Dating." Bloomberg Opinion (January 16, 2020).
- 02 Oct 2018
- First Look
New Research and Ideas, October 2, 2018
policies. Download working paper: https://www.hbs.edu/faculty/Pages/item.aspx?num=55050 "Developing Theory Using Machine Learning Methods By: Choudhury, Prithwiraj, Ryan Allen, and Michael G. Endres... View Details
Keywords: Dina Gerdeman
- June 2024
- Teaching Note
Numenta in 2020: The Future of AI
By: David B. Yoffie
In 2020, Numenta’s co-founder, Jeff Hawkins, completed his pathbreaking research on artificial intelligence. His co-founder and CEO, Donna Dubinsky, had to find a business model to monetize the technology. This teaching note explores the challenges of building a... View Details