Filter Results:
(598)
Show Results For
- All HBS Web
(3,050)
- Faculty Publications (598)
Show Results For
- All HBS Web
(3,050)
- Faculty Publications (598)
- March 2019
- Case
DayTwo: Going to Market with Gut Microbiome
By: Ayelet Israeli and David Lane
DayTwo is a young Israeli startup that applies research on the gut microbiome and machine learning algorithms to deliver personalized nutritional recommendations to its users in order to minimize blood sugar spikes after meals. After a first year of trial rollout in... View Details
Keywords: Start-up Growth; Startup; Positioning; Targeting; Go To Market Strategy; B2B2C; B2B Vs. B2C; Health & Wellness; AI; Machine Learning; Female Ceo; Female Protagonist; Science-based; Science And Technology Studies; Ecommerce; Applications; DTC; Direct To Consumer Marketing; US Health Care; "USA,"; Innovation; Pricing; Business Growth; Segmentation; Distribution Channels; Growth and Development Strategy; Business Startups; Science-Based Business; Health; Innovation and Invention; Marketing; Information Technology; Business Growth and Maturation; E-commerce; Applications and Software; Health Industry; Technology Industry; Insurance Industry; Information Technology Industry; Food and Beverage Industry; Israel; United States
Israeli, Ayelet, and David Lane. "DayTwo: Going to Market with Gut Microbiome." Harvard Business School Case 519-010, March 2019.
- February 2019
- Case
Miroglio Fashion (A)
By: Sunil Gupta and David Lane
Francesco Cavarero, chief information officer of Miroglio Fashion, Italy’s third-largest retailer of women’s apparel, was trying to bring analytical rigor to the company’s forecasting and inventory management decisions. But fashion is inherently hard to predict. Can... View Details
Keywords: Inventory Management; Demand Forecasting; Artificial Intelligence; Machine Learning; Forecasting and Prediction; Operations; Management; Decision Making; AI and Machine Learning; Apparel and Accessories Industry; Fashion Industry
Gupta, Sunil, and David Lane. "Miroglio Fashion (A)." Harvard Business School Case 519-053, February 2019.
- 2020
- Working Paper
Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach
By: Eva Ascarza
The success of Customer Relationship Management (CRM) programs ultimately depends on the firm's ability to understand consumers' preferences and precisely capture how these preferences may differ across customers. Only by understanding customer heterogeneity, firms can... View Details
Keywords: Customer Management; Targeting; Deep Exponential Families; Probabilistic Machine Learning; Cold Start Problem; Customer Relationship Management; Customer Value and Value Chain; Consumer Behavior; Analytics and Data Science; Mathematical Methods; Retail Industry
Padilla, Nicolas, and Eva Ascarza. "Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach." Harvard Business School Working Paper, No. 19-091, February 2019. (Revised May 2020. Accepted at the Journal of Marketing Research.)
- Article
Multivariate Unsupervised Machine Learning for Anomaly Detection in Enterprise Applications
By: Daniel Elsner, Pouya Aleatrati Khosroshahi, Alan MacCormack and Robert Lagerström
Existing application performance management (APM) solutions lack robust anomaly detection capabilities and root cause analysis techniques that do not require manual efforts and domain knowledge. In this paper, we develop a density-based unsupervised machine learning... View Details
Keywords: Big Data; Data Science And Analytics Management; Governance And Compliance; Organizational Systems And Technology; Anomaly Detection; Application Performance Management; Machine Learning; Enterprise Architecture; Analytics and Data Science
Elsner, Daniel, Pouya Aleatrati Khosroshahi, Alan MacCormack, and Robert Lagerström. "Multivariate Unsupervised Machine Learning for Anomaly Detection in Enterprise Applications." Proceedings of the Hawaii International Conference on System Sciences 52nd (2019): 5827–5836.
- 2019
- Article
Fair Algorithms for Learning in Allocation Problems
By: Hadi Elzayn, Shahin Jabbari, Christopher Jung, Michael J Kearns, Seth Neel, Aaron Leon Roth and Zachary Schutzman
Settings such as lending and policing can be modeled by a centralized agent allocating a scarce resource (e.g. loans or police officers) amongst several groups, in order to maximize some objective (e.g. loans given that are repaid, or criminals that are apprehended).... View Details
Elzayn, Hadi, Shahin Jabbari, Christopher Jung, Michael J Kearns, Seth Neel, Aaron Leon Roth, and Zachary Schutzman. "Fair Algorithms for Learning in Allocation Problems." Proceedings of the Conference on Fairness, Accountability, and Transparency (2019): 170–179.
- January 2019 (Revised October 2019)
- Case
Liulishuo: AI English Teacher
By: John J-H Kim and Shu Lin
Educators and entrepreneurs alike are excited about the potential for artificial intelligence (AI) and machine learning to change the way learning will look like in the future. There is a confluence of factors such as the availability of large sources of rich,... View Details
Keywords: AI; Artificial Intelligence; Education Technology; Information Technology; Education; Entrepreneurship; AI and Machine Learning; Education Industry; China
Kim, John J-H, and Shu Lin. "Liulishuo: AI English Teacher." Harvard Business School Case 319-090, January 2019. (Revised October 2019.)
- 2019
- Article
An Empirical Study of Rich Subgroup Fairness for Machine Learning
By: Michael J Kearns, Seth Neel, Aaron Leon Roth and Zhiwei Steven Wu
Kearns et al. [2018] recently proposed a notion of rich subgroup fairness intended to bridge the gap between statistical and individual notions of fairness. Rich subgroup fairness picks a statistical fairness constraint (say, equalizing false positive rates across... View Details
Kearns, Michael J., Seth Neel, Aaron Leon Roth, and Zhiwei Steven Wu. "An Empirical Study of Rich Subgroup Fairness for Machine Learning." Proceedings of the Conference on Fairness, Accountability, and Transparency (2019): 100–109.
- Article
Faithful and Customizable Explanations of Black Box Models
By: Himabindu Lakkaraju, Ece Kamar, Rich Caruana and Jure Leskovec
As predictive models increasingly assist human experts (e.g., doctors) in day-to-day decision making, it is crucial for experts to be able to explore and understand how such models behave in different feature subspaces in order to know if and when to trust them. To... View Details
Lakkaraju, Himabindu, Ece Kamar, Rich Caruana, and Jure Leskovec. "Faithful and Customizable Explanations of Black Box Models." Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (2019).
- Article
From Orientation to Behavior: The Interplay Between Learning Orientation, Open-mindedness, and Psychological Safety in Team Learning
By: Jean-François Harvey, Kevin J. Johnson, Kathryn S. Roloff and Amy C. Edmondson
Do teams with motivation to learn actually engage in the behaviors that produce learning? Though team learning orientation has been found to be positively related to team learning, we know little about how and when it actually fosters team learning. It is obviously not... View Details
Keywords: Emergent States; Goal Orientation; Open-mindedness; Psychological Safety; Team Learning; Teams; Groups and Teams; Learning; Goals and Objectives
Harvey, Jean-François, Kevin J. Johnson, Kathryn S. Roloff, and Amy C. Edmondson. "From Orientation to Behavior: The Interplay Between Learning Orientation, Open-mindedness, and Psychological Safety in Team Learning." Human Relations 72, no. 11 (November 2019): 1726–1751.
- December 2018 (Revised March 2021)
- Background Note
Modern Automation (A): Artificial Intelligence
By: William R. Kerr and James Palano
This primer is meant to be a field guide to the late 2010s' surge in business use of "Artificial Intelligence" (AI), or enterprise software based in machine learning. First, it provides an overview of the key trends—digitization, connectivity, the continuation of... View Details
Keywords: Artificial Intelligence; Digitization; Connectivity; Computing; Future Of Work; Automation; AI and Machine Learning
Kerr, William R., and James Palano. "Modern Automation (A): Artificial Intelligence." Harvard Business School Background Note 819-084, December 2018. (Revised March 2021.)
- December 2018
- Teaching Note
Autonomous Vehicles: The Rubber Hits the Road…but When?
By: William Kerr and James Palano
The autonomous vehicles have enormous implications for business and society. But, despite the headline-laden attention paid to the technology, there remain more questions than answers. Students will learn about the complex industry and have explicit discussions about... View Details
- December 2018
- Case
Choosy
By: Jeffrey J. Bussgang and Julia Kelley
Founded in 2017, Choosy is a data-driven fashion startup that uses algorithms to identify styles trending on social media. After manufacturing similar items using a China-based supply chain, Choosy sells them to consumers through its website and social media pages.... View Details
Keywords: Artificial Intelligence; Algorithms; Machine Learning; Neural Networks; Instagram; Influencer; Fast Fashion; Design; Customer Satisfaction; Customer Focus and Relationships; Decision Making; Cost vs Benefits; Innovation and Invention; Brands and Branding; Product Positioning; Demand and Consumers; Supply Chain; Production; Logistics; Business Model; Expansion; Internet and the Web; Mobile and Wireless Technology; Digital Platforms; Social Media; Technology Industry; Fashion Industry; North and Central America; United States; New York (state, US); New York (city, NY)
- December 2018
- Case
Bata versus Relaxo—Analyzing Performance
By: Suraj Srinivasan, Iris Leung and Quinn Pitcher
Set in 2016, “Bata India versus Relaxo—Analyzing Performance” compares the strategies and financial performance of two Indian footwear companies. Bata India had long been the market leader in footwear in India, but its leading market position was being challenged by... View Details
Keywords: Finance; Strategy; Operations; Performance Evaluation; Financial Statements; Analysis; Apparel and Accessories Industry
Srinivasan, Suraj, Iris Leung, and Quinn Pitcher. "Bata versus Relaxo—Analyzing Performance." Harvard Business School Case 119-050, December 2018.
- 2018
- Working Paper
Diagnostic Bubbles
By: Pedro Bordalo, Nicola Gennaioli, Spencer Yongwook Kwon and Andrei Shleifer
We introduce diagnostic expectations into a standard setting of price formation in which investors learn about the fundamental value of an asset and trade it. We study the interaction of diagnostic expectations with two well-known mechanisms: learning from prices and... View Details
Bordalo, Pedro, Nicola Gennaioli, Spencer Yongwook Kwon, and Andrei Shleifer. "Diagnostic Bubbles." NBER Working Paper Series, No. 25399, December 2018.
- November–December 2018
- Article
Online Network Revenue Management Using Thompson Sampling
By: Kris J. Ferreira, David Simchi-Levi and He Wang
We consider a network revenue management problem where an online retailer aims to maximize revenue from multiple products with limited inventory constraints. As common in practice, the retailer does not know the consumer's purchase probability at each price and must... View Details
Keywords: Online Marketing; Revenue Management; Revenue; Management; Marketing; Internet and the Web; Price; Mathematical Methods
Ferreira, Kris J., David Simchi-Levi, and He Wang. "Online Network Revenue Management Using Thompson Sampling." Operations Research 66, no. 6 (November–December 2018): 1586–1602.
- October 2018
- Case
Shield AI
By: Mitchell Weiss and A.J. Steinlage
Shield AI’s quadcopter – with no pilot and no flight plan – could clear a building and outpace human warfighters by almost five minutes. This was not to say that it was better than the warfighters or would replace their jobs, but it was evidence that autonomous robots... View Details
Keywords: Public Entrepreneurship; Artificial Intelligence; AI; Entrepreneurial Sales; Government; Defense; Shield AI; Brandon Tseng; Ryan Tseng; Andrew Reiter; Robots; Robotics; UAV; UAVs; Government Sales; Entrepreneurship; Public Sector; Sales; Government Administration; National Security; Business and Government Relations; AI and Machine Learning; Technology Industry; United States
Weiss, Mitchell, and A.J. Steinlage. "Shield AI." Harvard Business School Case 819-062, October 2018.
- October 2018
- Case
American Family Insurance and the Artificial Intelligence Opportunity
By: Rajiv Lal and Scott Johnson
Keywords: Artificial Intelligence; Machine Learning; Automation; Analytics; American Family; American Family Insurance; Insurance; Business Organization; Transformation; Talent and Talent Management; Employee Relationship Management; Innovation Strategy; Job Cuts and Outsourcing; Risk and Uncertainty; Mobile and Wireless Technology; Technology Adoption; Internet and the Web; Applications and Software; Corporate Strategy; AI and Machine Learning; Digital Transformation; Insurance Industry; Technology Industry; Wisconsin
- October 2018
- Article
The Operational Value of Social Media Information
By: Ruomeng Cui, Santiago Gallino, Antonio Moreno and Dennis J. Zhang
While the value of using social media information has been established in multiple business contexts, the field of operations and supply chain management have not yet explored the possibilities it offers in improving firms' operational decisions. This study attempts to... View Details
Cui, Ruomeng, Santiago Gallino, Antonio Moreno, and Dennis J. Zhang. "The Operational Value of Social Media Information." Special Issue on Big Data in Supply Chain Management. Production and Operations Management 27, no. 10 (October 2018): 1749–1774.
- September 2018 (Revised December 2019)
- Case
Zebra Medical Vision
By: Shane Greenstein and Sarah Gulick
An Israeli startup founded in 2014, Zebra Medical Vision developed algorithms that produced diagnoses from X-rays, mammograms, and CT-scans. The algorithms used deep learning and digitized radiology scans to create software that could assist doctors in making... View Details
Keywords: Radiology; Machine Learning; X-ray; CT Scan; Medical Technology; Probability; FDA 510(k); Diagnosis; Business Startups; Health Care and Treatment; Information Technology; Applications and Software; Competitive Strategy; Product Development; Commercialization; Decision Choices and Conditions; Health Industry; Medical Devices and Supplies Industry; Technology Industry; Israel
Greenstein, Shane, and Sarah Gulick. "Zebra Medical Vision." Harvard Business School Case 619-014, September 2018. (Revised December 2019.)
- September 2018
- Article
Discretionary Task Ordering: Queue Management in Radiological Services
By: Maria Ibanez, Jonathan R. Clark, Robert S. Huckman and Bradley R. Staats
Work-scheduling research typically prescribes task sequences implemented by managers. Yet employees often have discretion to deviate from their prescribed sequence. Using data from 2.4 million radiological diagnoses, we find that doctors prioritize similar tasks... View Details
Keywords: Discretion; Scheduling; Queue; Healthcare; Learning; Experience; Decentralization; Operations; Service Operations; Service Delivery; Performance; Performance Effectiveness; Performance Efficiency; Performance Improvement; Performance Productivity; Decisions; Time Management; Cost vs Benefits; Health Industry
Ibanez, Maria, Jonathan R. Clark, Robert S. Huckman, and Bradley R. Staats. "Discretionary Task Ordering: Queue Management in Radiological Services." Management Science 64, no. 9 (September 2018): 4389–4407. (Working paper available here. Winner of the 2017 Best Paper Competition of the POMS College of Healthcare Operations Management. Featured in Forbes, Quartz, and Inc.)