Filter Results:
(635)
Show Results For
- All HBS Web
(1,002)
- People (1)
- News (156)
- Research (635)
- Events (13)
- Multimedia (3)
- Faculty Publications (544)
Show Results For
- All HBS Web
(1,002)
- People (1)
- News (156)
- Research (635)
- Events (13)
- Multimedia (3)
- Faculty Publications (544)
Sort by
- 2025
- Working Paper
Generative AI Use by Capital Market Information Intermediaries: Evidence from Seeking Alpha
By: Mark Bradshaw, Chenyang Ma, Benjamin Yost and Yuan Zou
We study the use of generative AI for firm-specific financial analysis on the Seeking Alpha platform. We find that, after the initial launch of ChatGPT in November 2022, the share of AI-generated articles rose sharply to 13.4% of all articles, then declined in late... View Details
Keywords: Generative Ai; Seeking Alpha; Equity Research; Large Language Models; Gpt; AI and Machine Learning; Information Publishing; Financial Markets
Bradshaw, Mark, Chenyang Ma, Benjamin Yost, and Yuan Zou. "Generative AI Use by Capital Market Information Intermediaries: Evidence from Seeking Alpha." Harvard Business School Working Paper, No. 25-055, April 2025.
- August 2022 (Revised January 2023)
- Case
Icario Health: AI to Drive Health Engagement
By: David C. Edelman
Icario Health has built a market-leading artificial intelligence (AI) engine to help health insurers drive better health behaviors for their members, enabling the insurers to improve their Medicare performance. View Details
Keywords: Marketing; Health Care and Treatment; AI and Machine Learning; Health Industry; United States
Edelman, David C. "Icario Health: AI to Drive Health Engagement." Harvard Business School Case 523-025, August 2022. (Revised January 2023.)
- December 18, 2024
- Article
Is AI the Right Tool to Solve That Problem?
By: Paolo Cervini, Chiara Farronato, Pushmeet Kohli and Marshall W Van Alstyne
While AI has the potential to solve major problems, organizations embarking on such journeys of often encounter obstacles. They include a dearth of high-quality data; too many possible solutions; the lack of a clear, measurable objective; and difficulty in identifying... View Details
Cervini, Paolo, Chiara Farronato, Pushmeet Kohli, and Marshall W Van Alstyne. "Is AI the Right Tool to Solve That Problem?" Harvard Business Review (website) (December 18, 2024).
- March 2024
- Exercise
'Storrowed': A Generative AI Exercise
By: Mitchell Weiss
"Storrowed" is an exercise to help participants raise their capacity and curiosity for generative AI. It focuses on generative AI for problem understanding and ideation, but can be adapted for use more broadly. Participants use generative AI tools to understand a... View Details
Weiss, Mitchell. "'Storrowed': A Generative AI Exercise." Harvard Business School Exercise 824-188, March 2024.
- Winter 2021
- Editorial
Introduction
This issue of Negotiation Journal is dedicated to the theme of artificial intelligence, technology, and negotiation. It arose from a Program on Negotiation (PON) working conference on that important topic held virtually on May 17–18. The conference was not the... View Details
Wheeler, Michael A. "Introduction." Special Issue on Artificial Intelligence, Technology, and Negotiation. Negotiation Journal 37, no. 1 (Winter 2021): 5–12.
- April 1, 2024
- Other Article
Paying For AI In Healthcare: Setting The Right Precedent Amidst Growing Use
By: Mitchell Tang, Kaylee Wilson and Ateev Mehrotra
Tang, Mitchell, Kaylee Wilson, and Ateev Mehrotra. "Paying For AI In Healthcare: Setting The Right Precedent Amidst Growing Use." Health Affairs Forefront (April 1, 2024).
- November–December 2024
- Article
Outcome-Driven Dynamic Refugee Assignment with Allocation Balancing
By: Kirk Bansak and Elisabeth Paulson
This study proposes two new dynamic assignment algorithms to match refugees and asylum seekers to geographic localities within a host country. The first, currently implemented in a multi-year pilot in Switzerland, seeks to maximize the average predicted employment... View Details
Bansak, Kirk, and Elisabeth Paulson. "Outcome-Driven Dynamic Refugee Assignment with Allocation Balancing." Operations Research 72, no. 6 (November–December 2024): 2375–2390.
- July 2024 (Revised December 2024)
- Case
Compass Ethics: Governing Through Ethical Principles at WeCorp Industries
By: Elisabeth Kempf and Jesse M. Shapiro
Andrew Hill is Chief Information Officer at WeCorp, a UK-based defense technology startup specializing in drone technology. WeCorp faces decisions about international licensing and AI integration in its drones. In partnership with Compass Ethics, Hill aims to establish... View Details
Keywords: Business Startups; Decision Making; Ethics; Entrepreneurial Finance; AI and Machine Learning; Technology Industry; United Kingdom
Kempf, Elisabeth, and Jesse M. Shapiro. "Compass Ethics: Governing Through Ethical Principles at WeCorp Industries." Harvard Business School Case 224-105, July 2024. (Revised December 2024.)
- February 2024
- Technical Note
AI Product Development Lifecycle
By: Michael Parzen, Jessie Li and Marily Nika
In this article, we will discuss the concept of AI Products, how they are changing our daily lives, how the field of AI & Product Management is evolving, and the AI Product Development Lifecycle. View Details
Keywords: Artificial Intelligence; Product Management; Product Life Cycle; Technology; AI and Machine Learning; Product Development
Parzen, Michael, Jessie Li, and Marily Nika. "AI Product Development Lifecycle." Harvard Business School Technical Note 624-070, February 2024.
- September 23, 2024
- Article
AI Wants to Make You Less Lonely. Does It Work?
De Freitas, Julian. "AI Wants to Make You Less Lonely. Does It Work?" Wall Street Journal (September 23, 2024), R.11.
- 2023
- Working Paper
Distributionally Robust Causal Inference with Observational Data
By: Dimitris Bertsimas, Kosuke Imai and Michael Lingzhi Li
We consider the estimation of average treatment effects in observational studies and propose a new framework of robust causal inference with unobserved confounders. Our approach is based on distributionally robust optimization and proceeds in two steps. We first... View Details
Bertsimas, Dimitris, Kosuke Imai, and Michael Lingzhi Li. "Distributionally Robust Causal Inference with Observational Data." Working Paper, February 2023.
- Forthcoming
- Article
Engaging Customers with AI in Online Chats: Evidence from a Randomized Field Experiment
By: Shunyuan Zhang and Das Narayandas
We examine how artificial intelligence (AI) affected the productivity of customer service agents and customer sentiment in online interactions. Collaborating with a meal delivery company, we conducted a randomized field experiment that exploited exogenous variation in... View Details
- August 13, 2024
- Editorial
Can AI Save Physicians from Burnout?
By: Susanna Gallani, Lidia Moura and Katie Sonnefeldt
Gallani, Susanna, Lidia Moura, and Katie Sonnefeldt. "Can AI Save Physicians from Burnout?" Harvard Business School Working Knowledge (August 13, 2024).
- March 2024
- Simulation
'Storrowed'
By: Mitchell Weiss
The game was built to accompany "Storrowed": A Generative AI Exercise, available through Harvard Business Publishing. The game adds a timing element to "Storrowed" and enables the teacher to reward teams for strong prompts or penalize teams for believing AI... View Details
- 2024
- Working Paper
Displacement or Complementarity? The Labor Market Impact of Generative AI
By: Wilbur Xinyuan Chen, Suraj Srinivasan and Saleh Zakerinia
Generative AI is poised to reshape the labor market, affecting cognitive and white-collar occupations in ways distinct from past technological revolutions. This study examines whether generative AI displaces workers or augments their jobs by analyzing labor demand and... View Details
Keywords: Generative Ai; Labor Market; Automation And Augmentation; Labor; AI and Machine Learning; Competency and Skills
Chen, Wilbur Xinyuan, Suraj Srinivasan, and Saleh Zakerinia. "Displacement or Complementarity? The Labor Market Impact of Generative AI." Harvard Business School Working Paper, No. 25-039, December 2024.
- April 2021
- Case
Distinct Software
By: Das Narayandas, Arijit Sengupta and Jonathan Wray
Distinct Software (disguised name), a global enterprise software company, is at an important point in its growth trajectory where the luster of its mantra of “grow and win at any cost” has dimmed with increasing competition and margin pressures. To help navigate its... View Details
Keywords: Artificial Intelligence; Marketing; Sales; Performance Productivity; Technological Innovation; AI and Machine Learning
Narayandas, Das, Arijit Sengupta, and Jonathan Wray. "Distinct Software." Harvard Business School Case 521-101, April 2021.
- March 2019
- Teaching Note
Numenta: Inventing and (or) Commercializing AI
By: David B. Yoffie
This teaching notes accompanies the Numenta case, HBS No. 716-469. The focus is how to scale a new artificial intelligence technology, how to build a platform and overcome chicken-or-the-egg problems, and how to utilize open source software and licensing. View Details
- July 2024
- Article
AI, ROI, and Sales Productivity
Artificial intelligence (AI) is now a loose term for many different things and at the peak of its hype curve. So managers hitch-their-pitch to the term in arguing for resources. But like any technology, its business value depends upon actionable use cases embraced by... View Details
Cespedes, Frank V. "AI, ROI, and Sales Productivity." Top Sales Magazine (July 2024), 12–13.
- March 16, 2021
- Article
From Driverless Dilemmas to More Practical Commonsense Tests for Automated Vehicles
By: Julian De Freitas, Andrea Censi, Bryant Walker Smith, Luigi Di Lillo, Sam E. Anthony and Emilio Frazzoli
For the first time in history, automated vehicles (AVs) are being deployed in populated environments. This unprecedented transformation of our everyday lives demands a significant undertaking: endowing
complex autonomous systems with ethically acceptable behavior. We... View Details
Keywords: Automated Driving; Public Health; Artificial Intelligence; Transportation; Health; Ethics; Policy; AI and Machine Learning
De Freitas, Julian, Andrea Censi, Bryant Walker Smith, Luigi Di Lillo, Sam E. Anthony, and Emilio Frazzoli. "From Driverless Dilemmas to More Practical Commonsense Tests for Automated Vehicles." Proceedings of the National Academy of Sciences 118, no. 11 (March 16, 2021).
- 2023
- Article
Benchmarking Large Language Models on CMExam—A Comprehensive Chinese Medical Exam Dataset
By: Junling Liu, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin Wang, Chenyu You, Zhenhua Guo, Lei Zhu and Michael Lingzhi Li
Recent advancements in large language models (LLMs) have transformed the field of question answering (QA). However, evaluating LLMs in the medical field is challenging due to the lack of standardized and comprehensive datasets. To address this gap, we introduce CMExam,... View Details
Keywords: Large Language Model; AI and Machine Learning; Analytics and Data Science; Health Industry
Liu, Junling, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin Wang, Chenyu You, Zhenhua Guo, Lei Zhu, and Michael Lingzhi Li. "Benchmarking Large Language Models on CMExam—A Comprehensive Chinese Medical Exam Dataset." Conference on Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks Track 36 (2023).