Filter Results:
(189)
Show Results For
- All HBS Web
(317)
- News (46)
- Research (189)
- Events (1)
- Multimedia (1)
- Faculty Publications (125)
Show Results For
- All HBS Web
(317)
- News (46)
- Research (189)
- Events (1)
- Multimedia (1)
- Faculty Publications (125)
Sort by
- 2020
- Working Paper
Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach
By: Eva Ascarza
The success of Customer Relationship Management (CRM) programs ultimately depends on the firm's ability to understand consumers' preferences and precisely capture how these preferences may differ across customers. Only by understanding customer heterogeneity, firms can... View Details
Keywords: Customer Management; Targeting; Deep Exponential Families; Probabilistic Machine Learning; Cold Start Problem; Customer Relationship Management; Customer Value and Value Chain; Consumer Behavior; Analytics and Data Science; Mathematical Methods; Retail Industry
Padilla, Nicolas, and Eva Ascarza. "Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach." Harvard Business School Working Paper, No. 19-091, February 2019. (Revised May 2020. Accepted at the Journal of Marketing Research.)
- 25 Oct 2017
- Research & Ideas
Will Machine Learning Make You a Better Manager?
buy, how we talk, and even how we feel—and use that to make predictions about how we’ll act next. As the field of machine learning (ML) has become increasingly mainstream, says... View Details
- Article
Detecting Adversarial Attacks via Subset Scanning of Autoencoder Activations and Reconstruction Error
By: Celia Cintas, Skyler Speakman, Victor Akinwande, William Ogallo, Komminist Weldemariam, Srihari Sridharan and Edward McFowland III
Reliably detecting attacks in a given set of inputs is of high practical relevance because of the vulnerability of neural networks to adversarial examples. These altered inputs create a security risk in applications with real-world consequences, such as self-driving... View Details
Keywords: Autoencoder Networks; Pattern Detection; Subset Scanning; Computer Vision; Statistical Methods And Machine Learning; Machine Learning; Deep Learning; Data Mining; Big Data; Large-scale Systems; Mathematical Methods; Analytics and Data Science
Cintas, Celia, Skyler Speakman, Victor Akinwande, William Ogallo, Komminist Weldemariam, Srihari Sridharan, and Edward McFowland III. "Detecting Adversarial Attacks via Subset Scanning of Autoencoder Activations and Reconstruction Error." Proceedings of the International Joint Conference on Artificial Intelligence 29th (2020).
- 2018
- Working Paper
Forecasting Airport Transfer Passenger Flow Using Real-Time Data and Machine Learning
By: Xiaojia Guo, Yael Grushka-Cockayne and Bert De Reyck
Problem definition: In collaboration with Heathrow Airport, we develop a predictive system that generates quantile forecasts of transfer passengers’ connection times. Sampling from the distribution of individual passengers’ connection times, the system also produces... View Details
Keywords: Quantile Forecasts; Regression Tree; Copula; Passenger Flow Management; Data-driven Operations; Forecasting and Prediction; Data and Data Sets
Guo, Xiaojia, Yael Grushka-Cockayne, and Bert De Reyck. "Forecasting Airport Transfer Passenger Flow Using Real-Time Data and Machine Learning." Harvard Business School Working Paper, No. 19-040, October 2018.
- Article
Productivity and Selection of Human Capital with Machine Learning
By: Aaron Chalfin, Oren Danieli, Andrew Hillis, Zubin Jelveh, Michael Luca, Jens Ludwig and Sendhil Mullainathan
Keywords: Analytics and Data Science; Selection and Staffing; Performance Productivity; Mathematical Methods; Policy
Chalfin, Aaron, Oren Danieli, Andrew Hillis, Zubin Jelveh, Michael Luca, Jens Ludwig, and Sendhil Mullainathan. "Productivity and Selection of Human Capital with Machine Learning." American Economic Review: Papers and Proceedings 106, no. 5 (May 2016): 124–127.
- 2022
- Working Paper
TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations
By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet they have become more complex and harder to understand. To address this issue, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use explainability... View Details
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations." Working Paper, 2022.
- November 2022
- Article
A Language-Based Method for Assessing Symbolic Boundary Maintenance between Social Groups
By: Anjali M. Bhatt, Amir Goldberg and Sameer B. Srivastava
When the social boundaries between groups are breached, the tendency for people to erect and maintain symbolic boundaries intensifies. Drawing on extant perspectives on boundary maintenance, we distinguish between two strategies that people pursue in maintaining... View Details
Keywords: Culture; Machine Learning; Natural Language Processing; Symbolic Boundaries; Organizations; Boundaries; Social Psychology; Interpersonal Communication; Organizational Culture
Bhatt, Anjali M., Amir Goldberg, and Sameer B. Srivastava. "A Language-Based Method for Assessing Symbolic Boundary Maintenance between Social Groups." Sociological Methods & Research 51, no. 4 (November 2022): 1681–1720.
- August 2023
- Article
Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel
By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet models have become more complex and harder to understand. To understand complex models, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use... View Details
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel." Nature Machine Intelligence 5, no. 8 (August 2023): 873–883.
- Article
Towards the Unification and Robustness of Perturbation and Gradient Based Explanations
By: Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu and Himabindu Lakkaraju
As machine learning black boxes are increasingly being deployed in critical domains such as healthcare and criminal justice, there has been a growing emphasis on developing techniques for explaining these black boxes in a post hoc manner. In this work, we analyze two... View Details
Keywords: Machine Learning; Black Box Explanations; Decision Making; Forecasting and Prediction; Information Technology
Agarwal, Sushant, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu, and Himabindu Lakkaraju. "Towards the Unification and Robustness of Perturbation and Gradient Based Explanations." Proceedings of the International Conference on Machine Learning (ICML) 38th (2021).
- 2019
- Working Paper
Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles
By: Prithwiraj Choudhury, Dan Wang, Natalie A. Carlson and Tarun Khanna
We demonstrate how a novel synthesis of three methods—(1) unsupervised topic modeling of text data to generate new measures of textual variance, (2) sentiment analysis of text data, and (3) supervised ML coding of facial images with a cutting-edge convolutional neural... View Details
Choudhury, Prithwiraj, Dan Wang, Natalie A. Carlson, and Tarun Khanna. "Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles." Harvard Business School Working Paper, No. 18-064, January 2018. (Revised May 2019.)
- October 2018
- Article
The Operational Value of Social Media Information
By: Ruomeng Cui, Santiago Gallino, Antonio Moreno and Dennis J. Zhang
While the value of using social media information has been established in multiple business contexts, the field of operations and supply chain management have not yet explored the possibilities it offers in improving firms' operational decisions. This study attempts to... View Details
Cui, Ruomeng, Santiago Gallino, Antonio Moreno, and Dennis J. Zhang. "The Operational Value of Social Media Information." Special Issue on Big Data in Supply Chain Management. Production and Operations Management 27, no. 10 (October 2018): 1749–1774.
- 21 Aug 2019
- Research & Ideas
What Machine Learning Teaches Us about CEO Leadership Style
CEOs are communicators. Studies show that CEOs spend 85 percent of their time in communication-related activities, including speeches, meetings, and phone calls with people both inside and outside the firm.... View Details
Keywords: by Michael Blanding
- September 15, 2021
- Article
Improving Deconvolution Methods in Biology Through Open Innovation Competitions: An Application to the Connectivity Map
By: Andrea Blasco, Ted Natoli, Michael G. Endres, Rinat A. Sergeev, Steven Randazzo, Jin Hyun Paik, N.J. Maximilian Macaluso, Rajiv Narayan, Xiaodong Lu, David Peck, Karim R. Lakhani and Aravind Subramanian
A recurring problem in biomedical research is how to isolate signals of distinct populations (cell types, tissues, and genes) from composite measures obtained by a single analyte or sensor. Existing computational deconvolution approaches work well in many specific... View Details
Keywords: Deconvolution; Methods; Open Innovation Competition; Genomics; Research; Innovation and Invention
Blasco, Andrea, Ted Natoli, Michael G. Endres, Rinat A. Sergeev, Steven Randazzo, Jin Hyun Paik, N.J. Maximilian Macaluso, Rajiv Narayan, Xiaodong Lu, David Peck, Karim R. Lakhani, and Aravind Subramanian. "Improving Deconvolution Methods in Biology Through Open Innovation Competitions: An Application to the Connectivity Map." Bioinformatics 37, no. 18 (September 15, 2021).
- August 2021
- Article
Crowdsourcing Memories: Mixed Methods Research by Cultural Insiders-Epistemological Outsiders
By: Tarun Khanna, Karim R. Lakhani, Shubhangi Bhadada, Nabil Khan, Saba Kohli Davé, Rasim Alam and Meena Hewett
This paper examines the role that the two lead authors’ personal connections played in the research methodology and data collection for the Partition Stories Project—a mixed-methods approach to revisiting the much-studied historical trauma of the Partition of British... View Details
Keywords: Mixed Methods; Insider-outsiders; Myth Of Informed Objectivity; Hybrid Research; Oral Narratives; Research; Analysis; India
Khanna, Tarun, Karim R. Lakhani, Shubhangi Bhadada, Nabil Khan, Saba Kohli Davé, Rasim Alam, and Meena Hewett. "Crowdsourcing Memories: Mixed Methods Research by Cultural Insiders-Epistemological Outsiders." Academy of Management Perspectives 35, no. 3 (August 2021): 384–399.
- Research Summary
Overview
Jenny is broadly interested in interpretable machine learning (ML), identity and inequality, and improving existing methods used to answer social and policy-relevant questions. Her recent projects have focused on developing tools that explore how LLMs are reshaping... View Details
- 2022
- Conference Presentation
Towards the Unification and Robustness of Post hoc Explanation Methods
By: Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu and Himabindu Lakkaraju
As machine learning black boxes are increasingly being deployed in critical domains such as healthcare and criminal justice, there has been a growing emphasis on developing techniques for explaining these black boxes in a post hoc manner. In this work, we analyze two... View Details
Keywords: AI and Machine Learning
Agarwal, Sushant, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu, and Himabindu Lakkaraju. "Towards the Unification and Robustness of Post hoc Explanation Methods." Paper presented at the 3rd Symposium on Foundations of Responsible Computing (FORC), 2022.
- 2022
- Article
Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis.
By: Martin Pawelczyk, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay and Himabindu Lakkaraju
As machine learning (ML) models become more widely deployed in high-stakes applications, counterfactual explanations have emerged as key tools for providing actionable model explanations in practice. Despite the growing popularity of counterfactual explanations, a... View Details
Keywords: Machine Learning Models; Counterfactual Explanations; Adversarial Examples; Mathematical Methods
Pawelczyk, Martin, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay, and Himabindu Lakkaraju. "Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
- September 2009
- Article
A Detailed Analysis of the Reduction Mammaplasty Learning Curve: A Statistical Process Model for Approaching Surgical Performance Improvement
By: Matthew Carty MD, Rodney Chan, Robert S. Huckman, Daniel C. Snow and Dennis Orgill
Background: The increased focus on quality and efficiency improvement within academic surgery has met with variable success among plastic surgeons. Traditional surgical performance metrics, such as morbidity and mortality, are insufficient to improve the... View Details
Keywords: Experience and Expertise; Health Care and Treatment; Medical Specialties; Outcome or Result; Performance Efficiency; Performance Improvement
Carty, Matthew, MD, Rodney Chan, Robert S. Huckman, Daniel C. Snow, and Dennis Orgill. "A Detailed Analysis of the Reduction Mammaplasty Learning Curve: A Statistical Process Model for Approaching Surgical Performance Improvement." Plastic and Reconstructive Surgery 124, no. 3 (September 2009): 706–714.
- 2021
- Conference Presentation
An Algorithmic Framework for Fairness Elicitation
By: Christopher Jung, Michael J. Kearns, Seth Neel, Aaron Leon Roth, Logan Stapleton and Zhiwei Steven Wu
We consider settings in which the right notion of fairness is not captured by simple mathematical definitions (such as equality of error rates across groups), but might be more complex and nuanced and thus require elicitation from individual or collective stakeholders.... View Details
Jung, Christopher, Michael J. Kearns, Seth Neel, Aaron Leon Roth, Logan Stapleton, and Zhiwei Steven Wu. "An Algorithmic Framework for Fairness Elicitation." Paper presented at the 2nd Symposium on Foundations of Responsible Computing (FORC), 2021.
- 2022
- Working Paper
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
By: Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu and Himabindu Lakkaraju
As various post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to develop a deeper understanding of if and when the explanations output by these methods disagree with each other, and how... View Details
Krishna, Satyapriya, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu, and Himabindu Lakkaraju. "The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective." Working Paper, 2022.