Filter Results:
(288)
Show Results For
- All HBS Web
(2,073)
- Faculty Publications (288)
Show Results For
- All HBS Web
(2,073)
- Faculty Publications (288)
- February 2024
- Case
More than Optics: Olympus's Vision to Become a Leading Global MedTech Company
By: David J. Collis and Haisley Wert
In August 2022, CEO Yasuo Takeuchi reflected on Olympus Corporation’s recent transformation from being known as a Japanese consumer camera company to becoming a leading global medical technology (MedTech) company. Over the past dozen years, Takeuchi and prior... View Details
Keywords: Global Human Resource Management; Medical Technology; Corporate Strategy; Transformation; Globalization; Business Model; Leading Change; Organizational Structure; Organizational Change and Adaptation; Medical Devices and Supplies Industry; Japan; United States
Collis, David J., and Haisley Wert. "More than Optics: Olympus's Vision to Become a Leading Global MedTech Company." Harvard Business School Case 724-426, February 2024.
- Working Paper
Visual Uniqueness in Peer-to-Peer Marketplaces: Machine Learning Model Development, Validation, and Application
By: Flora Feng, Charis Li and Shunyuan Zhang
Peer-to-peer (P2P) marketplaces have seen exponential growth in recent years featured by unique offerings from individual providers. Despite the perceived value of uniqueness, scalable quantification of visual uniqueness in P2P platforms like Airbnb has been largely... View Details
Keywords: Peer-to-peer Markets; Marketplace Matching; AI and Machine Learning; Demand and Consumers; Digital Platforms; Marketing
Feng, Flora, Charis Li, and Shunyuan Zhang. "Visual Uniqueness in Peer-to-Peer Marketplaces: Machine Learning Model Development, Validation, and Application." SSRN Working Paper Series, No. 4665286, February 2024.
- 2024
- Working Paper
The Value of Open Source Software
By: Manuel Hoffmann, Frank Nagle and Yanuo Zhou
The value of a non-pecuniary (free) product is inherently difficult to assess. A pervasive
example is open source software (OSS), a global public good that plays a vital role in the economy
and is foundational for most technology we use today. However, it is... View Details
Hoffmann, Manuel, Frank Nagle, and Yanuo Zhou. "The Value of Open Source Software." Harvard Business School Working Paper, No. 24-038, January 2024.
- January 2024
- Case
Sprouts Farmers Market
By: Rajiv Lal, Forest L. Reinhardt and Natalie Kindred
Sprouts Farmers Markets (Sprouts) is a Phoenix, Arizona-based chain of 400-plus natural foods stores in 23 U.S. states and $6.4 billion in sales as of 2022. In its product assortment, brand image, and store environment, Sprouts emphasizes freshness, health, innovation,... View Details
Keywords: Business Model; Growth and Development Strategy; Brands and Branding; Strategic Planning; Sales; Business Strategy; Expansion; Product Positioning; Marketing Strategy; Competition; Retail Industry; United States; Arizona
Lal, Rajiv, Forest L. Reinhardt, and Natalie Kindred. "Sprouts Farmers Market." Harvard Business School Case 524-059, January 2024.
- 2024
- Conference Paper
Quantifying Uncertainty in Natural Language Explanations of Large Language Models
By: Himabindu Lakkaraju, Sree Harsha Tanneru and Chirag Agarwal
Large Language Models (LLMs) are increasingly used as powerful tools for several
high-stakes natural language processing (NLP) applications. Recent prompting
works claim to elicit intermediate reasoning steps and key tokens that serve as
proxy explanations for LLM... View Details
Lakkaraju, Himabindu, Sree Harsha Tanneru, and Chirag Agarwal. "Quantifying Uncertainty in Natural Language Explanations of Large Language Models." Paper presented at the Society for Artificial Intelligence and Statistics, 2024.
- January–February 2024
- Article
Shared Service Delivery Can Increase Client Engagement: A Study of Shared Medical Appointments
By: Ryan W. Buell, Kamalini Ramdas, Nazlı Sönmez, Kavitha Srinivasan and Rengaraj Venkatesh
Problem Definition: Clients and service providers alike often consider one-on-one service delivery to be ideal, assuming – perhaps unquestioningly – that devoting individualized attention best improves client outcomes. In contrast, in shared service delivery, clients... View Details
Keywords: Health Care and Treatment; Customer Satisfaction; Outcome or Result; Performance Improvement
Buell, Ryan W., Kamalini Ramdas, Nazlı Sönmez, Kavitha Srinivasan, and Rengaraj Venkatesh. "Shared Service Delivery Can Increase Client Engagement: A Study of Shared Medical Appointments." Manufacturing & Service Operations Management 26, no. 1 (January–February 2024): 154–166.
- 2024
- Chapter
The Private Economy Under Party-State Capitalism
By: Margaret M. Pearson, Meg Rithmire and Kellee S. Tsai
This chapter addresses the evolution of China’s approach to the private sector from the early reform era until the beginning of Xi Jinping’s third term. It argues that China has evolved from a familiar form of state capitalism, in which economic growth is the primary... View Details
Keywords: Government Administration; International Relations; Economic Growth; Economic Sectors; Economic Systems; China
Pearson, Margaret M., Meg Rithmire, and Kellee S. Tsai. "The Private Economy Under Party-State Capitalism." Chap. 3 in Chinese Politics: The Xi Jinping Difference. 2nd edition edited by Stanley Rosen and Daniel C. Lynch, 67–82. Routledge, 2024.
- 2023
- Working Paper
Money, Time, and Grant Design
By: Kyle Myers and Wei Yang Tham
The design of research grants has been hypothesized to be a useful tool for
influencing researchers and their science. We test this by conducting two thought
experiments in a nationally representative survey of academic researchers. First,
we offer participants a... View Details
Myers, Kyle, and Wei Yang Tham. "Money, Time, and Grant Design." Harvard Business School Working Paper, No. 24-037, December 2023.
- 2023
- Article
Benchmarking Large Language Models on CMExam—A Comprehensive Chinese Medical Exam Dataset
By: Junling Liu, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin Wang, Chenyu You, Zhenhua Guo, Lei Zhu and Michael Lingzhi Li
Recent advancements in large language models (LLMs) have transformed the field of question answering (QA). However, evaluating LLMs in the medical field is challenging due to the lack of standardized and comprehensive datasets. To address this gap, we introduce CMExam,... View Details
Keywords: Large Language Model; AI and Machine Learning; Analytics and Data Science; Health Industry
Liu, Junling, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin Wang, Chenyu You, Zhenhua Guo, Lei Zhu, and Michael Lingzhi Li. "Benchmarking Large Language Models on CMExam—A Comprehensive Chinese Medical Exam Dataset." Conference on Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks Track 36 (2023).
- 2023
- Article
MoPe: Model Perturbation-based Privacy Attacks on Language Models
By: Marvin Li, Jason Wang, Jeffrey Wang and Seth Neel
Recent work has shown that Large Language Models (LLMs) can unintentionally leak sensitive information present in their training data. In this paper, we present Model Perturbations (MoPe), a new method to identify with high confidence if a given text is in the training... View Details
Li, Marvin, Jason Wang, Jeffrey Wang, and Seth Neel. "MoPe: Model Perturbation-based Privacy Attacks on Language Models." Proceedings of the Conference on Empirical Methods in Natural Language Processing (2023): 13647–13660.
- 2023
- Article
Post Hoc Explanations of Language Models Can Improve Language Models
By: Satyapriya Krishna, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh and Himabindu Lakkaraju
Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance... View Details
Krishna, Satyapriya, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh, and Himabindu Lakkaraju. "Post Hoc Explanations of Language Models Can Improve Language Models." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- 2023
- Other Article
The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and Multi-Purpose Corpus of Patent Applications
By: Mirac Suzgun, Luke Melas-Kyriazi, Suproteem K. Sarkar, Scott Duke Kominers and Stuart Shieber
Innovation is a major driver of economic and social development, and information about many kinds of innovation is embedded in semi-structured data from patents and patent applications. Though the impact and novelty of innovations expressed in patent data are difficult... View Details
Keywords: USPTO; Natural Language Processing; Classification; Summarization; Patent Novelty; Patent Trolls; Patent Enforceability; Patents; Innovation and Invention; Intellectual Property; AI and Machine Learning; Analytics and Data Science
Suzgun, Mirac, Luke Melas-Kyriazi, Suproteem K. Sarkar, Scott Duke Kominers, and Stuart Shieber. "The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and Multi-Purpose Corpus of Patent Applications." Conference on Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks Track 36 (2023).
- Working Paper
An AI Method to Score Celebrity Visual Potential from Human Faces
By: Flora Feng, Shunyuan Zhang, Xiao Liu, Kannan Srinivasan and Cait Lamberton
Celebrities have extraordinary abilities to attract and influence others. Predicting celebrity visual potential is important in the domains of business, politics, media, and entertainment. Can we use human faces to predict celebrity visual potential? If so, which... View Details
Feng, Flora, Shunyuan Zhang, Xiao Liu, Kannan Srinivasan, and Cait Lamberton. "An AI Method to Score Celebrity Visual Potential from Human Faces." SSRN Working Paper Series, No. 4071188, November 2023.
- 2023
- Working Paper
Toward a Better Understanding of Open Ecosystems: Implications for Policymakers
By: Feng Zhu and Carmelo Cennamo
The digital realm is undergoing a significant transformation, marked by the emergence of platform
business models and the concept of open ecosystems. This paper delves into the intricate nature of
ecosystem openness, underscoring the point that the openness of... View Details
Zhu, Feng, and Carmelo Cennamo. "Toward a Better Understanding of Open Ecosystems: Implications for Policymakers." Working Paper, November 2023.
- October 2023
- Teaching Note
Timnit Gebru: 'SILENCED No More' on AI Bias and The Harms of Large Language Models
By: Tsedal Neeley and Tim Englehart
Teaching Note for HBS Case No. 422-085. Dr. Timnit Gebru—a leading artificial intelligence (AI) computer scientist and co-lead of Google’s Ethical AI team—was messaging with one of her colleagues when she saw the words: “Did you resign?? Megan sent an email saying that... View Details
- October 2023
- Case
Fixie and Conversational AI Sidekicks
By: Jeffrey J. Bussgang and Carin-Isabel Knoop
In March 2023, Fixie Co-Founder and Chief Architect Matt Welsh and co-founders had the kind of meeting no founders want to have. The president of leading artificial intelligence (AI) research and deployment firm OpenAI, which had catapulted into fame with its ChatGPT... View Details
Keywords: Large Language Model; Entrepreneurship; Decision Choices and Conditions; AI and Machine Learning; Technological Innovation; Competitive Strategy; Technology Industry; United States
Bussgang, Jeffrey J., and Carin-Isabel Knoop. "Fixie and Conversational AI Sidekicks." Harvard Business School Case 824-037, October 2023.
- October 2023
- Case
Driving Sustainability at AB InBev
By: Ethan Rouen and Antonio Manuel Oftelie
It was the height of the summer in 2022, and Michel Doukeris, the CEO of Anheuser-Busch InBev (AB InBev), and Peter Kraemer, the company’s Chief Supply Officer, gazed across the vast desert surrounding Zacatecas, Mexico. They were visiting their Grupo Modelo Brewery,... View Details
Keywords: Innovation; Transformation; Decisions; Environmental Sustainability; Leading Change; Growth Management; Business Model; Food and Beverage Industry; Mexico
Rouen, Ethan, and Antonio Manuel Oftelie. "Driving Sustainability at AB InBev." Harvard Business School Case 124-037, October 2023.
- 2023
- Working Paper
Causal Interpretation of Structural IV Estimands
By: Isaiah Andrews, Nano Barahona, Matthew Gentzkow, Ashesh Rambachan and Jesse M. Shapiro
We study the causal interpretation of instrumental variables (IV) estimands of nonlinear, multivariate structural models with respect to rich forms of model misspecification. We focus on guaranteeing that the researcher's estimator is sharp zero consistent, meaning... View Details
Keywords: Mathematical Methods
Andrews, Isaiah, Nano Barahona, Matthew Gentzkow, Ashesh Rambachan, and Jesse M. Shapiro. "Causal Interpretation of Structural IV Estimands." NBER Working Paper Series, No. 31799, October 2023.
- 2023
- Working Paper
In-Context Unlearning: Language Models as Few Shot Unlearners
By: Martin Pawelczyk, Seth Neel and Himabindu Lakkaraju
Machine unlearning, the study of efficiently removing the impact of specific training points on the
trained model, has garnered increased attention of late, driven by the need to comply with privacy
regulations like the Right to be Forgotten. Although unlearning is... View Details
Pawelczyk, Martin, Seth Neel, and Himabindu Lakkaraju. "In-Context Unlearning: Language Models as Few Shot Unlearners." Working Paper, October 2023.
- 2023
- Working Paper
Navigating the Jagged Technological Frontier: Field Experimental Evidence of the Effects of AI on Knowledge Worker Productivity and Quality
By: Fabrizio Dell'Acqua, Edward McFowland III, Ethan Mollick, Hila Lifshitz-Assaf, Katherine C. Kellogg, Saran Rajendran, Lisa Krayer, François Candelon and Karim R. Lakhani
The public release of Large Language Models (LLMs) has sparked tremendous interest in how humans will use Artificial Intelligence (AI) to accomplish a variety of tasks. In our study conducted with Boston Consulting Group, a global management consulting firm, we examine... View Details
Keywords: Large Language Model; AI and Machine Learning; Performance Efficiency; Performance Improvement
Dell'Acqua, Fabrizio, Edward McFowland III, Ethan Mollick, Hila Lifshitz-Assaf, Katherine C. Kellogg, Saran Rajendran, Lisa Krayer, François Candelon, and Karim R. Lakhani. "Navigating the Jagged Technological Frontier: Field Experimental Evidence of the Effects of AI on Knowledge Worker Productivity and Quality." Harvard Business School Working Paper, No. 24-013, September 2023.