Filter Results:
(675)
Show Results For
- All HBS Web
(675)
- News (144)
- Research (434)
- Events (20)
- Multimedia (12)
- Faculty Publications (315)
Show Results For
- All HBS Web
(675)
- News (144)
- Research (434)
- Events (20)
- Multimedia (12)
- Faculty Publications (315)
- July 2023
- Case
DayTwo: Going to Market with Gut Microbiome (Abridged)
By: Ayelet Israeli
DayTwo is a young Israeli startup that applies research on the gut microbiome and machine learning algorithms to deliver personalized nutritional recommendations to its users in order to minimize blood sugar spikes after meals. After a first year of trial rollout in... View Details
Keywords: Business Startups; AI and Machine Learning; Nutrition; Market Entry and Exit; Product Marketing; Distribution Channels
Israeli, Ayelet. "DayTwo: Going to Market with Gut Microbiome (Abridged)." Harvard Business School Case 524-015, July 2023.
- Research Summary
Overview
By: Antonio Moreno
Professor Moreno’s research explores how digital technologies are reshaping operational processes, with a particular focus on retail and service industries. His early work examined omnichannel retail—the integration of online and offline channels to create seamless... View Details
- 2024
- Working Paper
The Cram Method for Efficient Simultaneous Learning and Evaluation
By: Zeyang Jia, Kosuke Imai and Michael Lingzhi Li
We introduce the "cram" method, a general and efficient approach to simultaneous learning and evaluation using a generic machine learning (ML) algorithm. In a single pass of batched data, the proposed method repeatedly trains an ML algorithm and tests its empirical... View Details
Keywords: AI and Machine Learning
Jia, Zeyang, Kosuke Imai, and Michael Lingzhi Li. "The Cram Method for Efficient Simultaneous Learning and Evaluation." Working Paper, March 2024.
- November 2015 (Revised May 2016)
- Case
Aspiring Minds
By: Karim R. Lakhani, Marco Iansiti and Christine Snively
By 2015, India-based employment assessment and certification provider Aspiring Minds had helped facilitate over 300,000 job matches through its assessment tools. Aspiring Minds' flagship product, the Aspiring Minds Computer Adaptive Test (AMCAT), used machine learning... View Details
Keywords: Information Technology; Strategy; Higher Education; Technological Innovation; Employment; Technology Industry; India; China
Lakhani, Karim R., Marco Iansiti, and Christine Snively. "Aspiring Minds." Harvard Business School Case 616-013, November 2015. (Revised May 2016.)
- Article
Accuracy First: Selecting a Differential Privacy Level for Accuracy-Constrained ERM
By: Katrina Ligett, Seth Neel, Aaron Leon Roth, Bo Waggoner and Steven Wu
Traditional approaches to differential privacy assume a fixed privacy requirement ϵ for a computation, and attempt to maximize the accuracy of the computation subject to the privacy constraint. As differential privacy is increasingly deployed in practical settings, it... View Details
Ligett, Katrina, Seth Neel, Aaron Leon Roth, Bo Waggoner, and Steven Wu. "Accuracy First: Selecting a Differential Privacy Level for Accuracy-Constrained ERM." Journal of Privacy and Confidentiality 9, no. 2 (2019).
- 20 Apr 2021
- News
10 Things Your Artificial Intelligence Initiative Needs to Succeed
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for Homebuyer 1
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Keywords: Data-driven Decision-making; Decisions; Negotiation; Bids and Bidding; Valuation; Consumer Behavior; Real Estate Industry
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for Homebuyer 1." Harvard Business School Exercise 923-016, October 2022.
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for iBuyer 2
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for iBuyer 2." Harvard Business School Exercise 923-020, October 2022.
- November 2020
- Teaching Note
DayTwo: Going to Market with Gut Microbiome
By: Ayelet Israeli
Teaching Note for HBS Case No. 519-010. DayTwo is a young Israeli startup that applies research on the gut microbiome and machine learning algorithms to deliver personalized nutritional recommendations to its users in order to minimize blood sugar spikes after meals.... View Details
Keywords: Start-up Growth; Startup; Positioning; Targeting; Go To Market Strategy; B2B Vs. B2C; B2B2C; Health & Wellness; AI; Machine Learning; Female Ceo; Female Protagonist; Science-based; Science And Technology Studies; Ecommerce; Applications; DTC; Direct To Consumer Marketing; US Health Care; "USA,"; Innovation; Pricing; Business Growth; Segmentation; Distribution Channels; Growth and Development Strategy; Business Startups; Science-Based Business; Health; Innovation and Invention; Marketing; Information Technology; Business Growth and Maturation; E-commerce; Applications and Software; Health Industry; Technology Industry; Insurance Industry; Information Technology Industry; Food and Beverage Industry; Israel; United States
- 2023
- Working Paper
PRIMO: Private Regression in Multiple Outcomes
By: Seth Neel
We introduce a new differentially private regression setting we call Private Regression in Multiple Outcomes (PRIMO), inspired the common situation where a data analyst wants to perform a set of l regressions while preserving privacy, where the covariates... View Details
Neel, Seth. "PRIMO: Private Regression in Multiple Outcomes." Working Paper, March 2023.
- 03 Sep 2019
- News
Wait Wait…Tell Me!
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for Homebuyer 3
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for Homebuyer 3." Harvard Business School Exercise 923-018, October 2022.
- 20 Apr 2020
- News
Digital Transformation: Business Leaders Still Struggling to Cope
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for Homebuyer 2
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for Homebuyer 2." Harvard Business School Exercise 923-017, October 2022.
- 2023
- Working Paper
Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness
By: Neil Menghani, Edward McFowland III and Daniel B. Neill
In this paper, we develop a new criterion, "insufficiently justified disparate impact" (IJDI), for assessing whether recommendations (binarized predictions) made by an algorithmic decision support tool are fair. Our novel, utility-based IJDI criterion evaluates false... View Details
Menghani, Neil, Edward McFowland III, and Daniel B. Neill. "Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness." Working Paper, June 2023.
- 27 Feb 2018
- HBS Seminar
Lin William Cong, University of Chicago Booth School of Business
- 2024
- Working Paper
Principles and Content for Downstream Emissions Disclosures
By: Robert S. Kaplan and Karthik Ramanna
In a previous paper, we proposed the E-liability carbon accounting algorithm for companies to measure and subsequently reduce their own and their suppliers’ emissions. Some investors and stakeholders, however, want companies to also be accountable for downstream... View Details
Keywords: Carbon Emissions; Disclosure; Carbon Footprint; Climate Change; Measurement and Metrics; Corporate Disclosure; Environmental Sustainability; Corporate Social Responsibility and Impact
Kaplan, Robert S., and Karthik Ramanna. "Principles and Content for Downstream Emissions Disclosures." Harvard Business School Working Paper, No. 24-050, January 2024.
- 2016
- Chapter
Deriving an Optimally Deceptive Policy in Two-Player Iterated Games
By: Elisabeth Paulson and Christopher Griffin
We formulate the problem of determining an optimally deceptive strategy in a repeated game framework. We assume that two players are engaged in repeated play. During an initial time period, Player 1 may deceptively train his opponent to expect a specific strategy. The... View Details
Paulson, Elisabeth, and Christopher Griffin. "Deriving an Optimally Deceptive Policy in Two-Player Iterated Games." In Proceedings of 2016 American Control Conference. IEEE Press, 2016. (Developed with Booz Allen Hamilton.)
Do You Know How Your Teams Get Work Done?
In a research study at four Fortune 500 companies, when managers were asked about their teams’ work, on average they either did not know or could not remember 60% of the work their teams do. This is a major problem because it can lead to unrealistic digital... View Details