Filter Results:
(645)
Show Results For
- All HBS Web
(645)
- News (145)
- Research (421)
- Events (15)
- Multimedia (11)
- Faculty Publications (295)
Show Results For
- All HBS Web
(645)
- News (145)
- Research (421)
- Events (15)
- Multimedia (11)
- Faculty Publications (295)
- December 2019
- Article
Costly Concessions: An Empirical Framework for Matching with Imperfectly Transferable Utility
By: Alfred Galichon, Scott Duke Kominers and Simon Weber
We introduce an empirical framework for models of matching with imperfectly transferable utility and unobserved heterogeneity in tastes. Our framework allows us to characterize matching equilibrium in a flexible way that includes as special cases the classic fully- and... View Details
Keywords: Sorting; Matching; Marriage Market; Intrahousehold Allocation; Imperfectly Transferable Utility; Marketplace Matching; Mathematical Methods
Galichon, Alfred, Scott Duke Kominers, and Simon Weber. "Costly Concessions: An Empirical Framework for Matching with Imperfectly Transferable Utility." Journal of Political Economy 127, no. 6 (December 2019): 2875–2925.
- February 2011 (Revised February 2012)
- Case
Online Marketing at Big Skinny
By: Benjamin Edelman and Scott Duke Kominers
Describes a wallet maker's application of seven Internet marketing technologies: display ads, algorithmic search, sponsored search, social media, interactive content, online distributors, and A/B testing. Provides concise introductions to the key features of each... View Details
Keywords: Advertising Campaigns; Digital Marketing; Resource Allocation; Marketing Strategy; Performance Evaluation; Internet and the Web; Retail Industry
Edelman, Benjamin, and Scott Duke Kominers. "Online Marketing at Big Skinny." Harvard Business School Case 911-033, February 2011. (Revised February 2012.) (request a courtesy copy.)
- Article
Vungle Inc. Improves Monetization Using Big-Data Analytics
By: Bert De Reyck, Ioannis Fragkos, Yael Grushka-Cockayne, Casey Lichtendahl, Hammond Guerin and Andrew Kritzer
The advent of big data has created opportunities for firms to customize their products and services to unprecedented levels of granularity. Using big data to personalize an offering in real time, however, remains a major challenge. In the mobile advertising industry,... View Details
Keywords: Big Data; Monetization; Data and Data Sets; Advertising; Mobile Technology; Customization and Personalization; Performance Improvement
De Reyck, Bert, Ioannis Fragkos, Yael Grushka-Cockayne, Casey Lichtendahl, Hammond Guerin, and Andrew Kritzer. "Vungle Inc. Improves Monetization Using Big-Data Analytics." Interfaces 47, no. 5 (September–October 2017): 454–466.
- 2021
- Working Paper
First Law of Motion: Influencer Video Advertising on TikTok
By: Jeremy Yang, Juanjuan Zhang and Yuhan Zhang
This paper engineers an intuitive feature that is predictive of the causal effect of influencer video advertising on product sales. We propose the concept of m-score, a summary statistic that captures the extent to which a product is advertised in the most engaging... View Details
Keywords: Influencer Advertising; Video Advertising; Computer Vision; Machine Learning; Advertising; Online Technology
Yang, Jeremy, Juanjuan Zhang, and Yuhan Zhang. "First Law of Motion: Influencer Video Advertising on TikTok." Working Paper, March 2021.
- 17 Jan 2020
- News
Review: Competing in the Digital Age
- Research Summary
Overview
I develop machine learning tools and techniques which enable human decision makers to make better decisions. More specifically, my research addresses the following fundamental questions pertaining to human and algorithmic decision-making:
1. How to build... View Details
1. How to build... View Details
- September 2020 (Revised February 2024)
- Teaching Note
Artea (A), (B), (C), and (D): Designing Targeting Strategies
By: Eva Ascarza and Ayelet Israeli
Teaching Note for HBS No. 521-021,521-022,521-037,521-043. This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and... View Details
- Article
Adaptive Machine Unlearning
By: Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi and Chris Waites
Data deletion algorithms aim to remove the influence of deleted data points from trained models at a cheaper computational cost than fully retraining those models. However, for sequences of deletions, most prior work in the non-convex setting gives valid guarantees... View Details
Gupta, Varun, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris Waites. "Adaptive Machine Unlearning." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
- 14 Nov 2016
- News
Why Big Data Isn’t Enough
- October 2019
- Article
Making Sense of Recommendations
By: Michael Yeomans, Anuj Shah, Sendhil Mullainathan and Jon Kleinberg
Computer algorithms are increasingly being used to predict people's preferences and make recommendations. Although people frequently encounter these algorithms because they are cheap to scale, we do not know how they compare to human judgment. Here, we compare computer... View Details
Keywords: Recommender Systems; Artificial Intelligence; Interpretability; Information Technology; Forecasting and Prediction; Decision Making; Attitudes
Yeomans, Michael, Anuj Shah, Sendhil Mullainathan, and Jon Kleinberg. "Making Sense of Recommendations." Journal of Behavioral Decision Making 32, no. 4 (October 2019): 403–414.
- 25 Aug 2018
- News
Are Superstar Firms and Amazon Effects Reshaping the Economy?
- August 2021 (Revised November 2024)
- Case
Intenseye: Powering Workplace Health and Safety with AI (A)
By: Michael W. Toffel and Youssef Abdel Aal
Intenseye was a Turkey-based technology startup that deployed machine learning algorithms to workplace camera feeds in order to identify unsafe worker actions and unsafe working conditions, in order to help improve worker safety. The case describes how Intenseye’s... View Details
Keywords: Privacy; Product Development; Operations; Technological Innovation; Value Creation; Production; Distribution; Safety; Risk and Uncertainty; Technology Industry; Manufacturing Industry; Distribution Industry; Turkey; Middle East; United States
Toffel, Michael W., and Youssef Abdel Aal. "Intenseye: Powering Workplace Health and Safety with AI (A)." Harvard Business School Case 622-037, August 2021. (Revised November 2024.)
Edward McFowland III
Edward McFowland III is an Assistant Professor in the Technology and Operations Management Unit at Harvard Business School. He teaches the first-year TOM course in the required curriculum.
Professor McFowland’s research interests – which lie at the... View Details
- Article
Advancing Computational Biology and Bioinformatics Research Through Open Innovation Competitions
By: Andrea Blasco, Michael G. Endres, Rinat A. Sergeev, Anup Jonchhe, Max Macaluso, Rajiv Narayan, Ted Natoli, Jin H. Paik, Bryan Briney, Chunlei Wu, Andrew I. Su, Aravind Subramanian and Karim R. Lakhani
Open data science and algorithm development competitions offer a unique avenue for rapid discovery of better computational strategies. We highlight three examples in computational biology and bioinformatics research where the use of competitions has yielded significant... View Details
Keywords: Computational Biology; Bioinformatics; Innovation Competitions; Research; Collaborative Innovation and Invention
Blasco, Andrea, Michael G. Endres, Rinat A. Sergeev, Anup Jonchhe, Max Macaluso, Rajiv Narayan, Ted Natoli, Jin H. Paik, Bryan Briney, Chunlei Wu, Andrew I. Su, Aravind Subramanian, and Karim R. Lakhani. "Advancing Computational Biology and Bioinformatics Research Through Open Innovation Competitions." PLoS ONE 14, no. 9 (September 2019).
- 25 Sep 2015
- Blog Post
4 Challenges All Early-Stage Startups Face
During our first year at HBS, my classmates and I took the opportunity to build cleverlayover, a flight search engine that uses advanced algorithms to find flights hundreds of dollars cheaper than any other search engine. We were able to... View Details
- 2020
- Working Paper
Machine Learning for Pattern Discovery in Management Research
Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used as an observation for further inductive or abductive research, but should not be treated as the result of a... View Details
Keywords: Machine Learning; Theory Building; Induction; Decision Trees; Random Forests; K-nearest Neighbors; Neural Network; P-hacking; Analytics and Data Science; Analysis
Choudhury, Prithwiraj, Ryan Allen, and Michael G. Endres. "Machine Learning for Pattern Discovery in Management Research." Harvard Business School Working Paper, No. 19-032, September 2018. (Revised June 2020.)
- 17 Apr 2025
- HBS Seminar