Filter Results:
(57)
Show Results For
- All HBS Web
(118,467)
- Faculty Publications (57)
Show Results For
- All HBS Web
(118,467)
- Faculty Publications (57)
- 2023
- Article
Balancing Risk and Reward: An Automated Phased Release Strategy
By: Yufan Li, Jialiang Mao and Iavor Bojinov
Phased releases are a common strategy in the technology industry for gradually releasing new products or updates through a sequence of A/B tests in which the number of treated units gradually grows until full deployment or deprecation. Performing phased releases in a... View Details
Li, Yufan, Jialiang Mao, and Iavor Bojinov. "Balancing Risk and Reward: An Automated Phased Release Strategy." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- November–December 2023
- Article
Keep Your AI Projects on Track
By: Iavor Bojinov
AI—and especially its newest star, generative AI—is today a central theme in corporate boardrooms, leadership discussions, and casual exchanges among employees eager to supercharge their productivity. Sadly, beneath the aspirational headlines and tantalizing potential... View Details
Keywords: Generative Models; AI and Machine Learning; Success; Failure; Product Development; Technology Adoption
Bojinov, Iavor. "Keep Your AI Projects on Track." Harvard Business Review 101, no. 6 (November–December 2023): 53–59.
- July 2023
- Article
Design and Analysis of Switchback Experiments
By: Iavor I Bojinov, David Simchi-Levi and Jinglong Zhao
In switchback experiments, a firm sequentially exposes an experimental unit to a random treatment, measures its response, and repeats the procedure for several periods to determine which treatment leads to the best outcome. Although practitioners have widely adopted... View Details
Bojinov, Iavor I., David Simchi-Levi, and Jinglong Zhao. "Design and Analysis of Switchback Experiments." Management Science 69, no. 7 (July 2023): 3759–3777.
- 2023
- Working Paper
Design-Based Confidence Sequences: A General Approach to Risk Mitigation in Online Experimentation
By: Dae Woong Ham, Michael Lindon, Martin Tingley and Iavor Bojinov
Randomized experiments have become the standard method for companies to evaluate the performance of new products or services. In addition to augmenting managers’ decision-making, experimentation mitigates risk by limiting the proportion of customers exposed to... View Details
Keywords: Performance Evaluation; Research and Development; Analytics and Data Science; Consumer Behavior
Ham, Dae Woong, Michael Lindon, Martin Tingley, and Iavor Bojinov. "Design-Based Confidence Sequences: A General Approach to Risk Mitigation in Online Experimentation." Harvard Business School Working Paper, No. 23-070, May 2023.
- 2023
- Working Paper
Nailing Prediction: Experimental Evidence on the Value of Tools in Predictive Model Development
By: Daniel Yue, Paul Hamilton and Iavor Bojinov
Predictive model development is understudied despite its centrality in modern artificial
intelligence and machine learning business applications. Although prior discussions
highlight advances in methods (along the dimensions of data, computing power, and
algorithms)... View Details
Keywords: Analytics and Data Science
Yue, Daniel, Paul Hamilton, and Iavor Bojinov. "Nailing Prediction: Experimental Evidence on the Value of Tools in Predictive Model Development." Harvard Business School Working Paper, No. 23-029, December 2022. (Revised April 2023.)
- December 1, 2022
- Article
Which Connections Really Help You Find a Job?
By: Iavor I. Bojinov, Karthik Rajkumar, Guillaume Saint-Jacques, Erik Brynjolfsson and Sinan Aral
Experiments involving 20 million people generated a surprising finding: moderately weak connects — and not strong connections — are the most useful in finding a new job. To be more specific, the ties that are most helpful for finding new jobs tend to be moderately... View Details
Bojinov, Iavor I., Karthik Rajkumar, Guillaume Saint-Jacques, Erik Brynjolfsson, and Sinan Aral. "Which Connections Really Help You Find a Job?" Harvard Business Review (website) (December 1, 2022).
- October 2022 (Revised January 2025)
- Case
On Ramp to Crypto
Bojinov, Iavor, Michael Parzen, and Paul Hamilton. "On Ramp to Crypto." Harvard Business School Case 623-040, October 2022. (Revised January 2025.)
- September 16, 2022
- Article
A Causal Test of the Strength of Weak Ties
By: Karthik Rajkumar, Guillaume Saint-Jacques, Iavor I. Bojinov, Erik Brynjolfsson and Sinan Aral
The authors analyzed data from multiple large-scale randomized experiments on LinkedIn’s People You May Know algorithm, which recommends new connections to LinkedIn members, to test the extent to which weak ties increased job mobility in the world’s largest... View Details
Rajkumar, Karthik, Guillaume Saint-Jacques, Iavor I. Bojinov, Erik Brynjolfsson, and Sinan Aral. "A Causal Test of the Strength of Weak Ties." Science 377, no. 6612 (September 16, 2022).
- September 2022 (Revised July 2023)
- Case
Data Privacy in Practice at LinkedIn
Bojinov, Iavor, Marco Iansiti, and Seth Neel. "Data Privacy in Practice at LinkedIn." Harvard Business School Case 623-024, September 2022. (Revised July 2023.)
- Article
Online Experimentation: Benefits, Operational and Methodological Challenges, and Scaling Guide
By: Iavor Bojinov and Somit Gupta
In the past decade, online controlled experimentation, or A/B testing, at scale has proved to be a significant driver of business innovation. The practice was first pioneered by the technology sector and, more recently, has been adopted by traditional companies... View Details
Keywords: A/B Testing; Experimentation; Data-driven Culture; Product Development; Innovation and Invention; Digital Transformation
Bojinov, Iavor, and Somit Gupta. "Online Experimentation: Benefits, Operational and Methodological Challenges, and Scaling Guide." Harvard Data Science Review, no. 4.3 (Summer, 2022).
- June 2022 (Revised January 2025)
- Technical Note
Causal Inference
This note provides an overview of causal inference for an introductory data science course. First, the note discusses observational studies and confounding variables. Next the note describes how randomized experiments can be used to account for the effect of... View Details
Keywords: Causal Inference; Causality; Experiment; Experimental Design; Data Science; Analytics and Data Science
Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Causal Inference." Harvard Business School Technical Note 622-111, June 2022. (Revised January 2025.)
- March 2022 (Revised January 2025)
- Technical Note
Exploratory Data Analysis
This module note provides an overview of exploratory data analysis for an introduction to data science course. It begins by defining the term "data", and then describes the different types of data that companies work with (structured v. unstructured, categorical v.... View Details
Keywords: Data Analysis; Data Science; Statistics; Data Visualization; Exploratory Data Analysis; Analytics and Data Science; Analysis
Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Exploratory Data Analysis." Harvard Business School Technical Note 622-098, March 2022. (Revised January 2025.)
- March 2022 (Revised January 2025)
- Technical Note
Linear Regression
This note provides an overview of linear regression for an introductory data science course. It begins with a discussion of correlation, and explains why correlation does not necessarily imply causation. The note then describes the method of least squares, and how to... View Details
Keywords: Data Science; Linear Regression; Mathematical Modeling; Mathematical Methods; Analytics and Data Science
Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Linear Regression." Harvard Business School Technical Note 622-100, March 2022. (Revised January 2025.)
- March 2022 (Revised January 2025)
- Technical Note
Prediction & Machine Learning
This note provides an introduction to machine learning for an introductory data science course. The note begins with a description of supervised, unsupervised, and reinforcement learning. Then, the note provides a brief explanation of the difference between traditional... View Details
Keywords: Machine Learning; Data Science; Learning; Analytics and Data Science; Performance Evaluation
Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Prediction & Machine Learning." Harvard Business School Technical Note 622-101, March 2022. (Revised January 2025.)
- March 2022 (Revised January 2025)
- Technical Note
Statistical Inference
This note provides an overview of statistical inference for an introductory data science course. First, the note discusses samples and populations. Next the note describes how to calculate confidence intervals for means and proportions. Then it walks through the logic... View Details
Keywords: Data Science; Statistics; Mathematical Modeling; Mathematical Methods; Analytics and Data Science
Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Statistical Inference." Harvard Business School Technical Note 622-099, March 2022. (Revised January 2025.)
- March 2022
- Article
Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models
By: Fiammetta Menchetti and Iavor Bojinov
Researchers regularly use synthetic control methods for estimating causal effects when a sub-set of units receive a single persistent treatment, and the rest are unaffected by the change. In many applications, however, units not assigned to treatment are nevertheless... View Details
Keywords: Causal Inference; Partial Interference; Synthetic Controls; Bayesian Structural Time Series; Mathematical Methods
Menchetti, Fiammetta, and Iavor Bojinov. "Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models." Annals of Applied Statistics 16, no. 1 (March 2022): 414–435.
- November 2021
- Article
Panel Experiments and Dynamic Causal Effects: A Finite Population Perspective
By: Iavor Bojinov, Ashesh Rambachan and Neil Shephard
In panel experiments, we randomly assign units to different interventions, measuring their outcomes, and repeating the procedure in several periods. Using the potential outcomes framework, we define finite population dynamic causal effects that capture the relative... View Details
Keywords: Panel Data; Dynamic Causal Effects; Potential Outcomes; Finite Population; Nonparametric; Mathematical Methods
Bojinov, Iavor, Ashesh Rambachan, and Neil Shephard. "Panel Experiments and Dynamic Causal Effects: A Finite Population Perspective." Quantitative Economics 12, no. 4 (November 2021): 1171–1196.
- August 2021 (Revised February 2024)
- Case
Data Science at the Warriors
By: Iavor I. Bojinov and Michael Parzen
The case explores the development and early growth of a data science team at the Golden State Warriors, an NBA team based in San Francisco. The case begins by explaining the initial rationale for investing in data science, then covers a debate on the appropriate team... View Details
Keywords: Data Science; Digital Marketing; Analysis; Forecasting and Prediction; Technological Innovation; Information Technology; Sports Industry; San Francisco; United States
Bojinov, Iavor I., and Michael Parzen. "Data Science at the Warriors." Harvard Business School Case 622-048, August 2021. (Revised February 2024.)
- August 2021
- Case
Orchadio's First Two Split Experiments
By: Iavor I. Bojinov, Marco Iansiti and David Lane
Orchadio, a direct-to-consumer grocery business, needs to conduct its first two A/B tests—one to evaluate the effectiveness and functioning of its newly redesigned website, and one to market-test four versions of a new banner for the website. To do so, it will rely on... View Details
Keywords: Information Management; Technological Innovation; Knowledge Use and Leverage; Resource Allocation; Marketing; Measurement and Metrics; Customization and Personalization; Information Technology; Internet and the Web; Digital Platforms; Information Technology Industry; Food and Beverage Industry
Bojinov, Iavor I., Marco Iansiti, and David Lane. "Orchadio's First Two Split Experiments." Harvard Business School Case 622-015, August 2021.
- August 2021
- Case
Precision Paint Co.
Describes a marketing director about to launch a new process for demand forecasting. Provides data that allow students to do a multivariable regression analysis. A rewritten version of an earlier case. View Details
Bojinov, Iavor I., Chiara Farronato, Janice H. Hammond, Michael Parzen, and Paul Hamilton. "Precision Paint Co." Harvard Business School Case 622-055, August 2021.