Filter Results:
(189)
Show Results For
- All HBS Web
(317)
- News (46)
- Research (189)
- Events (1)
- Multimedia (1)
- Faculty Publications (125)
Show Results For
- All HBS Web
(317)
- News (46)
- Research (189)
- Events (1)
- Multimedia (1)
- Faculty Publications (125)
Page 1 of 189
Results →
Sort by
- 2017
- Working Paper
Machine Learning Methods for Strategy Research
By: Mike Horia Teodorescu
Numerous applications of machine learning have gained acceptance in the field of strategy and management research only during the last few years. Established uses span such diverse problems as strategic foreign investments, strategic resource allocation, systemic risk... View Details
Keywords: Machine Learning; Natural Language Processing; Classification; Decision Trees; Strategic Decisions; Strategy; Research; Information Technology
Teodorescu, Mike Horia. "Machine Learning Methods for Strategy Research." Harvard Business School Working Paper, No. 18-011, August 2017. (Revised October 2017.)
- August 2020 (Revised September 2020)
- Technical Note
Assessing Prediction Accuracy of Machine Learning Models
The note introduces a variety of methods to assess the accuracy of machine learning prediction models. The note begins by briefly introducing machine learning, overfitting, training versus test datasets, and cross validation. The following accuracy metrics and tools... View Details
Keywords: Machine Learning; Statistics; Econometric Analyses; Experimental Methods; Data Analysis; Data Analytics; Forecasting and Prediction; Analytics and Data Science; Analysis; Mathematical Methods
Toffel, Michael W., Natalie Epstein, Kris Ferreira, and Yael Grushka-Cockayne. "Assessing Prediction Accuracy of Machine Learning Models." Harvard Business School Technical Note 621-045, August 2020. (Revised September 2020.)
- March 2022 (Revised January 2025)
- Technical Note
Prediction & Machine Learning
This note provides an introduction to machine learning for an introductory data science course. The note begins with a description of supervised, unsupervised, and reinforcement learning. Then, the note provides a brief explanation of the difference between traditional... View Details
Keywords: Machine Learning; Data Science; Learning; Analytics and Data Science; Performance Evaluation
Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Prediction & Machine Learning." Harvard Business School Technical Note 622-101, March 2022. (Revised January 2025.)
- Mar 2021
- Conference Presentation
Descent-to-Delete: Gradient-Based Methods for Machine Unlearning
By: Seth Neel, Aaron Leon Roth and Saeed Sharifi-Malvajerdi
We study the data deletion problem for convex models. By leveraging techniques from convex optimization and reservoir sampling, we give the first data deletion algorithms that are able to handle an arbitrarily long sequence of adversarial updates while promising both... View Details
Neel, Seth, Aaron Leon Roth, and Saeed Sharifi-Malvajerdi. "Descent-to-Delete: Gradient-Based Methods for Machine Unlearning." Paper presented at the 32nd Algorithmic Learning Theory Conference, March 2021.
- 08 Oct 2018
- Working Paper Summaries
Developing Theory Using Machine Learning Methods
- 02 Aug 2017
- Working Paper Summaries
Machine Learning Methods for Strategy Research
Keywords: by Mike Horia Teodorescu
- 18 Nov 2016
- Conference Presentation
Rawlsian Fairness for Machine Learning
By: Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel and Aaron Leon Roth
Motivated by concerns that automated decision-making procedures can unintentionally lead to discriminatory behavior, we study a technical definition of fairness modeled after John Rawls' notion of "fair equality of opportunity". In the context of a simple model of... View Details
Joseph, Matthew, Michael J. Kearns, Jamie Morgenstern, Seth Neel, and Aaron Leon Roth. "Rawlsian Fairness for Machine Learning." Paper presented at the 3rd Workshop on Fairness, Accountability, and Transparency in Machine Learning, Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), November 18, 2016.
- 2019
- Article
An Empirical Study of Rich Subgroup Fairness for Machine Learning
By: Michael J Kearns, Seth Neel, Aaron Leon Roth and Zhiwei Steven Wu
Kearns et al. [2018] recently proposed a notion of rich subgroup fairness intended to bridge the gap between statistical and individual notions of fairness. Rich subgroup fairness picks a statistical fairness constraint (say, equalizing false positive rates across... View Details
Kearns, Michael J., Seth Neel, Aaron Leon Roth, and Zhiwei Steven Wu. "An Empirical Study of Rich Subgroup Fairness for Machine Learning." Proceedings of the Conference on Fairness, Accountability, and Transparency (2019): 100–109.
- February 2021
- Tutorial
Assessing Prediction Accuracy of Machine Learning Models
By: Michael Toffel and Natalie Epstein
This video describes how to assess the accuracy of machine learning prediction models, primarily in the context of machine learning models that predict binary outcomes, such as logistic regression, random forest, or nearest neighbor models. After introducing and... View Details
- January 2021
- Article
Machine Learning for Pattern Discovery in Management Research
By: Prithwiraj Choudhury, Ryan Allen and Michael G. Endres
Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used for exploratory inductive or abductive research, or for post-hoc analysis of regression results to detect... View Details
Keywords: Machine Learning; Supervised Machine Learning; Induction; Abduction; Exploratory Data Analysis; Pattern Discovery; Decision Trees; Random Forests; Neural Networks; ROC Curve; Confusion Matrix; Partial Dependence Plots; AI and Machine Learning
Choudhury, Prithwiraj, Ryan Allen, and Michael G. Endres. "Machine Learning for Pattern Discovery in Management Research." Strategic Management Journal 42, no. 1 (January 2021): 30–57.
- Article
Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles
By: Prithwiraj Choudhury, Dan Wang, Natalie A. Carlson and Tarun Khanna
We demonstrate how a novel synthesis of three methods—(1) unsupervised topic modeling of text data to generate new measures of textual variance, (2) sentiment analysis of text data, and (3) supervised ML coding of facial images with a cutting-edge convolutional neural... View Details
Keywords: CEOs; Communication Style; Machine Learning; Spoken Communication; Nonverbal Communication; Personal Characteristics; Analysis; Performance
Choudhury, Prithwiraj, Dan Wang, Natalie A. Carlson, and Tarun Khanna. "Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles." Strategic Management Journal 40, no. 11 (November 2019): 1705–1732.
- 2020
- Working Paper
Machine Learning for Pattern Discovery in Management Research
Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used as an observation for further inductive or abductive research, but should not be treated as the result of a... View Details
Keywords: Machine Learning; Theory Building; Induction; Decision Trees; Random Forests; K-nearest Neighbors; Neural Network; P-hacking; Analytics and Data Science; Analysis
Choudhury, Prithwiraj, Ryan Allen, and Michael G. Endres. "Machine Learning for Pattern Discovery in Management Research." Harvard Business School Working Paper, No. 19-032, September 2018. (Revised June 2020.)
- 2024
- Working Paper
Empirical Guidance: Data Processing and Analysis with Applications in Stata, R, and Python
By: Melissa Ouellet and Michael W. Toffel
This paper describes a range of best practices to compile and analyze datasets, and includes some examples in Stata, R, and Python. It is meant to serve as a reference for those getting started in econometrics, and especially those seeking to conduct data analyses in... View Details
Keywords: Empirical Methods; Empirical Operations; Statistical Methods And Machine Learning; Statistical Interferences; Research Analysts; Analytics and Data Science; Mathematical Methods
Ouellet, Melissa, and Michael W. Toffel. "Empirical Guidance: Data Processing and Analysis with Applications in Stata, R, and Python." Harvard Business School Working Paper, No. 25-010, August 2024.
- Article
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness
By: Michael J Kearns, Seth Neel, Aaron Leon Roth and Zhiwei Steven Wu
The most prevalent notions of fairness in machine learning are statistical definitions: they fix a small collection of pre-defined groups, and then ask for parity of some statistic of the classifier (like classification rate or false positive rate) across these groups.... View Details
Kearns, Michael J., Seth Neel, Aaron Leon Roth, and Zhiwei Steven Wu. "Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness." Proceedings of the International Conference on Machine Learning (ICML) 35th (2018).
- 2025
- Article
Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments
By: Kosuke Imai and Michael Lingzhi Li
Researchers are increasingly turning to machine learning (ML) algorithms to investigate causal heterogeneity in randomized experiments. Despite their promise, ML algorithms may fail to accurately ascertain heterogeneous treatment effects under practical settings with... View Details
Imai, Kosuke, and Michael Lingzhi Li. "Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments." Journal of Business & Economic Statistics 43, no. 1 (2025): 256–268.
- 2020
- Working Paper
Is Accounting Useful for Forecasting GDP Growth? A Machine Learning Perspective
We provide a comprehensive examination of whether, to what extent, and which accounting variables are useful for improving the predictive accuracy of GDP growth forecasts. We leverage statistical models that accommodate a broad set of (341) variables—outnumbering the... View Details
Keywords: Big Data; Elastic Net; GDP Growth; Machine Learning; Macro Forecasting; Short Fat Data; Accounting; Economic Growth; Forecasting and Prediction; Analytics and Data Science
Datar, Srikant, Apurv Jain, Charles C.Y. Wang, and Siyu Zhang. "Is Accounting Useful for Forecasting GDP Growth? A Machine Learning Perspective." Harvard Business School Working Paper, No. 21-113, December 2020.
- October 2017 (Revised April 2018)
- Case
Improving Worker Safety in the Era of Machine Learning (A)
By: Michael W. Toffel, Dan Levy, Jose Ramon Morales Arilla and Matthew S. Johnson
Managers make predictions all the time: How fast will my markets grow? How much inventory do I need? How intensively should I monitor my suppliers? Which potential customers will be most responsive to a particular marketing campaign? Which job candidates should I... View Details
Keywords: Machine Learning; Policy Implementation; Empirical Research; Inspection; Occupational Safety; Occupational Health; Regulation; Analysis; Forecasting and Prediction; Policy; Operations; Supply Chain Management; Safety; Manufacturing Industry; Construction Industry; United States
Toffel, Michael W., Dan Levy, Jose Ramon Morales Arilla, and Matthew S. Johnson. "Improving Worker Safety in the Era of Machine Learning (A)." Harvard Business School Case 618-019, October 2017. (Revised April 2018.)
- Teaching Interest
Overview
I served as a Teaching Fellow for the Applied Business Analytics second-year MBA course. This course sought to teach MBA students how businesses can improve their strategic decisions using statistics and machine learning techniques. (e.g., regression models, random... View Details
- 2024
- Working Paper
The Cram Method for Efficient Simultaneous Learning and Evaluation
By: Zeyang Jia, Kosuke Imai and Michael Lingzhi Li
We introduce the "cram" method, a general and efficient approach to simultaneous learning and evaluation using a generic machine learning (ML) algorithm. In a single pass of batched data, the proposed method repeatedly trains an ML algorithm and tests its empirical... View Details
Keywords: AI and Machine Learning
Jia, Zeyang, Kosuke Imai, and Michael Lingzhi Li. "The Cram Method for Efficient Simultaneous Learning and Evaluation." Working Paper, March 2024.
- Article
Learning Models for Actionable Recourse
By: Alexis Ross, Himabindu Lakkaraju and Osbert Bastani
As machine learning models are increasingly deployed in high-stakes domains such as legal and financial decision-making, there has been growing interest in post-hoc methods for generating counterfactual explanations. Such explanations provide individuals adversely... View Details
Ross, Alexis, Himabindu Lakkaraju, and Osbert Bastani. "Learning Models for Actionable Recourse." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).