Filter Results:
(169)
Show Results For
- All HBS Web
(1,266)
- Faculty Publications (169)
Show Results For
- All HBS Web
(1,266)
- Faculty Publications (169)
Page 1 of 169
Results →
- 2025
- Article
Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments
By: Kosuke Imai and Michael Lingzhi Li
Researchers are increasingly turning to machine learning (ML) algorithms to investigate causal heterogeneity in randomized experiments. Despite their promise, ML algorithms may fail to accurately ascertain heterogeneous treatment effects under practical settings with... View Details
Imai, Kosuke, and Michael Lingzhi Li. "Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments." Journal of Business & Economic Statistics 43, no. 1 (2025): 256–268.
- December 5, 2024
- Article
A Consensus Definition of Creativity in Surgery: A Delphi Study Protocol
By: Alex Thabane, Tyler McKechnie, Phillip Staibano, Vikram Arora, Goran Calic, Jason W. Busse, Sameer Parpia and Mohit Bhandari
Introduction
Clear definitions are essential in science, particularly in the study of abstract phenomena like creativity. Due to its inherent complexity and domain-specific nature, the study of creativity has been complicated, as evidenced by the various... View Details
Clear definitions are essential in science, particularly in the study of abstract phenomena like creativity. Due to its inherent complexity and domain-specific nature, the study of creativity has been complicated, as evidenced by the various... View Details
Thabane, Alex, Tyler McKechnie, Phillip Staibano, Vikram Arora, Goran Calic, Jason W. Busse, Sameer Parpia, and Mohit Bhandari. "A Consensus Definition of Creativity in Surgery: A Delphi Study Protocol." PLoS ONE 19, no. 12 (December 5, 2024).
- December 2024
- Article
Respect for Improvements and Comparative Statics in Matching Markets
One of the oldest results in the theory of two-sided matching is the entry comparative static, which shows that under the Gale–Shapley deferred acceptance algorithm, adding a new agent to one side of the market makes all the agents on the other side weakly... View Details
Kominers, Scott Duke. "Respect for Improvements and Comparative Statics in Matching Markets." Journal of Mechanism and Institution Design 9, no. 1 (December 2024): 83–104.
- November 2024
- Article
Preference Externality Estimators: A Comparison of Border Approaches and IVs
By: Xi Ling, Wesley R. Hartmann and Tomomichi Amano
This paper compares two estimators—the Border Approach and an Instrumental Variable (IV) estimator—using a unified framework where identifying variation arises from “preference externalities,” following the intuition in Waldfogel (2003). We highlight two dimensions in... View Details
Ling, Xi, Wesley R. Hartmann, and Tomomichi Amano. "Preference Externality Estimators: A Comparison of Border Approaches and IVs." Management Science 70, no. 11 (November 2024): 7892–7910.
- July–August 2024
- Article
Disclosing Downstream Emissions
By: Robert S. Kaplan and Karthik Ramanna
An increasing number of companies are using the E-liability carbon-accounting method as an important tool for tracking progress toward reducing global emissions in their supply chains. The system does not require formal accounting for downstream emissions—those... View Details
Keywords: Carbon Emissions; Environmental Accounting; Corporate Accountability; Corporate Social Responsibility and Impact; Corporate Disclosure; Environmental Sustainability
Kaplan, Robert S., and Karthik Ramanna. "Disclosing Downstream Emissions." Harvard Business Review 102, no. 4 (July–August 2024): 124–133.
- 2024
- Working Paper
Incrementality Representation Learning: Synergizing Past Experiments for Intervention Personalization
This paper introduces Incrementality Representation Learning (IRL), a novel multitask representation learning framework that predicts heterogeneous causal effects of marketing interventions. By leveraging past experiments, IRL efficiently designs and targets... View Details
Keywords: Heterogeneous Treatment Effect; Multi-task Learning; Representation Learning; Personalization; Promotion; Deep Learning; Field Experiments; Customer Focus and Relationships; Customization and Personalization
Huang, Ta-Wei, Eva Ascarza, and Ayelet Israeli. "Incrementality Representation Learning: Synergizing Past Experiments for Intervention Personalization." Harvard Business School Working Paper, No. 24-076, June 2024.
- 2024
- Working Paper
Don’t Expect Juniors to Teach Senior Professionals to Use Generative AI: Emerging Technology Risks and Novice AI Risk Mitigation Tactics
By: Katherine C. Kellogg, Hila Lifshitz-Assaf, Steven Randazzo, Ethan Mollick, Fabrizio Dell'Acqua, Edward McFowland III, François Candelon and Karim R. Lakhani
The literature on communities of practice demonstrates that a proven way for senior professionals to upskill
themselves in the use of new technologies that undermine existing expertise is to learn from junior
professionals. It notes that juniors may be better able... View Details
Kellogg, Katherine C., Hila Lifshitz-Assaf, Steven Randazzo, Ethan Mollick, Fabrizio Dell'Acqua, Edward McFowland III, François Candelon, and Karim R. Lakhani. "Don’t Expect Juniors to Teach Senior Professionals to Use Generative AI: Emerging Technology Risks and Novice AI Risk Mitigation Tactics." Harvard Business School Working Paper, No. 24-074, June 2024.
- 2024
- Working Paper
Winner Take All: Exploiting Asymmetry in Factorial Designs
By: Matthew DosSantos DiSorbo, Iavor I. Bojinov and Fiammetta Menchetti
Researchers and practitioners have embraced factorial experiments to simultaneously test multiple treatments, each with different levels. With the rise of technologies like Generative AI, factorial experimentation has become even more accessible: it is easier than ever... View Details
Keywords: Factorial Designs; Fisher Randomizations; Rank Estimators; Employer Interventions; Causal Inference; Mathematical Methods; Performance Improvement
DosSantos DiSorbo, Matthew, Iavor I. Bojinov, and Fiammetta Menchetti. "Winner Take All: Exploiting Asymmetry in Factorial Designs." Harvard Business School Working Paper, No. 24-075, June 2024.
- 2024
- Working Paper
Does the Case for Private Equity Still Hold?
By: Nori Gerardo Lietz and Philipp Chvanov
Private Equity (“PE”) received a 10-fold increase in capital flows since the Great Financial Crisis (“GFC”) Investors sought higher nominal returns relative to those they could obtain in the public capital markets. This paper questions the fundamental assumptions... View Details
Lietz, Nori Gerardo, and Philipp Chvanov. "Does the Case for Private Equity Still Hold?" Harvard Business School Working Paper, No. 24-066, January 2024.
- 2024
- Working Paper
The Cram Method for Efficient Simultaneous Learning and Evaluation
By: Zeyang Jia, Kosuke Imai and Michael Lingzhi Li
We introduce the "cram" method, a general and efficient approach to simultaneous learning and evaluation using a generic machine learning (ML) algorithm. In a single pass of batched data, the proposed method repeatedly trains an ML algorithm and tests its empirical... View Details
Keywords: AI and Machine Learning
Jia, Zeyang, Kosuke Imai, and Michael Lingzhi Li. "The Cram Method for Efficient Simultaneous Learning and Evaluation." Working Paper, March 2024.
- 2023
- Working Paper
Estimating Productivity in the Presence of Spillovers: Firm-Level Evidence from the U.S. Production Network
By: Ebehi Iyoha
This paper examines the extent to which productivity gains are transmitted across U.S. firms through buyer-supplier relationships. Many empirical studies measure firm-to-firm spillovers using firm-level productivity estimates derived from control function approaches.... View Details
Iyoha, Ebehi. "Estimating Productivity in the Presence of Spillovers: Firm-Level Evidence from the U.S. Production Network." Harvard Business School Working Paper, No. 24-033, December 2023. (Winner of the Young Economists' Essay Award at the 2021 Annual Conference of the European Association for Research in Industrial Economics (EARIE))
- 2023
- Article
Which Models Have Perceptually-Aligned Gradients? An Explanation via Off-Manifold Robustness
By: Suraj Srinivas, Sebastian Bordt and Himabindu Lakkaraju
One of the remarkable properties of robust computer vision models is that their input-gradients are often aligned with human perception, referred to in the literature as perceptually-aligned gradients (PAGs). Despite only being trained for classification, PAGs cause... View Details
Srinivas, Suraj, Sebastian Bordt, and Himabindu Lakkaraju. "Which Models Have Perceptually-Aligned Gradients? An Explanation via Off-Manifold Robustness." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- 2023
- Working Paper
Causal Interpretation of Structural IV Estimands
By: Isaiah Andrews, Nano Barahona, Matthew Gentzkow, Ashesh Rambachan and Jesse M. Shapiro
We study the causal interpretation of instrumental variables (IV) estimands of nonlinear, multivariate structural models with respect to rich forms of model misspecification. We focus on guaranteeing that the researcher's estimator is sharp zero consistent, meaning... View Details
Keywords: Mathematical Methods
Andrews, Isaiah, Nano Barahona, Matthew Gentzkow, Ashesh Rambachan, and Jesse M. Shapiro. "Causal Interpretation of Structural IV Estimands." NBER Working Paper Series, No. 31799, October 2023.
- October 2023
- Article
Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA
By: Matthew S. Johnson, David I. Levine and Michael W. Toffel
We study how a regulator can best target inspections. Our case study is a U.S. Occupational Safety and Health Administration (OSHA) program that randomly allocated some inspections. On average, each inspection averted 2.4 serious injuries (9%) over the next five years.... View Details
Keywords: Safety Regulations; Regulations; Regulatory Enforcement; Machine Learning Models; Safety; Operations; Service Operations; Production; Forecasting and Prediction; Decisions; United States
Johnson, Matthew S., David I. Levine, and Michael W. Toffel. "Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA." American Economic Journal: Applied Economics 15, no. 4 (October 2023): 30–67. (Profiled in the Regulatory Review.)
- August 2023
- Article
Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel
By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet models have become more complex and harder to understand. To understand complex models, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use... View Details
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel." Nature Machine Intelligence 5, no. 8 (August 2023): 873–883.
- 2023
- Article
Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten
By: Himabindu Lakkaraju, Satyapriya Krishna and Jiaqi Ma
The Right to Explanation and the Right to be Forgotten are two important principles outlined to regulate algorithmic decision making and data usage in real-world applications. While the right to explanation allows individuals to request an actionable explanation for an... View Details
Keywords: Analytics and Data Science; AI and Machine Learning; Decision Making; Governing Rules, Regulations, and Reforms
Lakkaraju, Himabindu, Satyapriya Krishna, and Jiaqi Ma. "Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten." Proceedings of the International Conference on Machine Learning (ICML) 40th (2023): 17808–17826.
- 2023
- Working Paper
Design-Based Confidence Sequences: A General Approach to Risk Mitigation in Online Experimentation
By: Dae Woong Ham, Michael Lindon, Martin Tingley and Iavor Bojinov
Randomized experiments have become the standard method for companies to evaluate the performance of new products or services. In addition to augmenting managers’ decision-making, experimentation mitigates risk by limiting the proportion of customers exposed to... View Details
Keywords: Performance Evaluation; Research and Development; Analytics and Data Science; Consumer Behavior
Ham, Dae Woong, Michael Lindon, Martin Tingley, and Iavor Bojinov. "Design-Based Confidence Sequences: A General Approach to Risk Mitigation in Online Experimentation." Harvard Business School Working Paper, No. 23-070, May 2023.
- 2023
- Article
Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators
By: Benjamin Jakubowski, Siram Somanchi, Edward McFowland III and Daniel B. Neill
Regression discontinuity (RD) designs are widely used to estimate causal effects in the absence of a randomized experiment. However, standard approaches to RD analysis face two significant limitations. First, they require a priori knowledge of discontinuities in... View Details
Jakubowski, Benjamin, Siram Somanchi, Edward McFowland III, and Daniel B. Neill. "Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators." Journal of Machine Learning Research 24, no. 133 (2023): 1–57.
- 2024
- Working Paper
Using LLMs for Market Research
By: James Brand, Ayelet Israeli and Donald Ngwe
Large language models (LLMs) have rapidly gained popularity as labor-augmenting
tools for programming, writing, and many other processes that benefit from quick text
generation. In this paper we explore the uses and benefits of LLMs for researchers and
practitioners... View Details
Keywords: Large Language Model; Research; AI and Machine Learning; Analysis; Customers; Consumer Behavior; Technology Industry; Information Technology Industry
Brand, James, Ayelet Israeli, and Donald Ngwe. "Using LLMs for Market Research." Harvard Business School Working Paper, No. 23-062, April 2023. (Revised July 2024.)
- 2023
- Article
Estimating Causal Peer Influence in Homophilous Social Networks by Inferring Latent Locations.
By: Edward McFowland III and Cosma Rohilla Shalizi
Social influence cannot be identified from purely observational data on social networks, because such influence is generically confounded with latent homophily, that is, with a node’s network partners being informative about the node’s attributes and therefore its... View Details
Keywords: Causal Inference; Homophily; Social Networks; Peer Influence; Social and Collaborative Networks; Power and Influence; Mathematical Methods
McFowland III, Edward, and Cosma Rohilla Shalizi. "Estimating Causal Peer Influence in Homophilous Social Networks by Inferring Latent Locations." Journal of the American Statistical Association 118, no. 541 (2023): 707–718.