Filter Results:
(12)
Show Results For
- All HBS Web
(12)
- Research (11)
- Faculty Publications (8)
Show Results For
- All HBS Web
(12)
- Research (11)
- Faculty Publications (8)
Page 1 of 12
Results
- 2021
- Article
Fair Algorithms for Infinite and Contextual Bandits
By: Matthew Joseph, Michael J Kearns, Jamie Morgenstern, Seth Neel and Aaron Leon Roth
We study fairness in linear bandit problems. Starting from the notion of meritocratic fairness introduced in Joseph et al. [2016], we carry out a more refined analysis of a more general problem, achieving better performance guarantees with fewer modelling assumptions... View Details
Joseph, Matthew, Michael J Kearns, Jamie Morgenstern, Seth Neel, and Aaron Leon Roth. "Fair Algorithms for Infinite and Contextual Bandits." Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society 4th (2021).
- Article
Mitigating Bias in Adaptive Data Gathering via Differential Privacy
By: Seth Neel and Aaron Leon Roth
Data that is gathered adaptively—via bandit algorithms, for example—exhibits bias. This is true both when gathering simple numeric valued data—the empirical means kept track of by stochastic bandit algorithms are biased downwards—and when gathering more complicated... View Details
Neel, Seth, and Aaron Leon Roth. "Mitigating Bias in Adaptive Data Gathering via Differential Privacy." Proceedings of the International Conference on Machine Learning (ICML) 35th (2018).
- 2023
- Working Paper
An Experimental Design for Anytime-Valid Causal Inference on Multi-Armed Bandits
By: Biyonka Liang and Iavor I. Bojinov
Typically, multi-armed bandit (MAB) experiments are analyzed at the end of the study and thus require the analyst to specify a fixed sample size in advance. However, in many online learning applications, it is advantageous to continuously produce inference on the... View Details
Liang, Biyonka, and Iavor I. Bojinov. "An Experimental Design for Anytime-Valid Causal Inference on Multi-Armed Bandits." Harvard Business School Working Paper, No. 24-057, March 2024.
- 18 Nov 2016
- Conference Presentation
Rawlsian Fairness for Machine Learning
By: Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel and Aaron Leon Roth
Motivated by concerns that automated decision-making procedures can unintentionally lead to discriminatory behavior, we study a technical definition of fairness modeled after John Rawls' notion of "fair equality of opportunity". In the context of a simple model of... View Details
Joseph, Matthew, Michael J. Kearns, Jamie Morgenstern, Seth Neel, and Aaron Leon Roth. "Rawlsian Fairness for Machine Learning." Paper presented at the 3rd Workshop on Fairness, Accountability, and Transparency in Machine Learning, Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), November 18, 2016.
- November–December 2018
- Article
Online Network Revenue Management Using Thompson Sampling
By: Kris J. Ferreira, David Simchi-Levi and He Wang
We consider a network revenue management problem where an online retailer aims to maximize revenue from multiple products with limited inventory constraints. As common in practice, the retailer does not know the consumer's purchase probability at each price and must... View Details
Keywords: Online Marketing; Revenue Management; Revenue; Management; Marketing; Internet and the Web; Price; Mathematical Methods
Ferreira, Kris J., David Simchi-Levi, and He Wang. "Online Network Revenue Management Using Thompson Sampling." Operations Research 66, no. 6 (November–December 2018): 1586–1602.
Balancing Risk and Reward: An Automated Phased Release Strategy
Phased releases are a common strategy in the technology industry for gradually releasing new products or updates through a sequence of A/B tests in which the number of treated units gradually grows until full deployment or deprecation. Performing phased releases... View Details
- 2023
- Article
Balancing Risk and Reward: An Automated Phased Release Strategy
By: Yufan Li, Jialiang Mao and Iavor Bojinov
Phased releases are a common strategy in the technology industry for gradually releasing new products or updates through a sequence of A/B tests in which the number of treated units gradually grows until full deployment or deprecation. Performing phased releases in a... View Details
Li, Yufan, Jialiang Mao, and Iavor Bojinov. "Balancing Risk and Reward: An Automated Phased Release Strategy." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- 2022
- Article
Towards Robust Off-Policy Evaluation via Human Inputs
By: Harvineet Singh, Shalmali Joshi, Finale Doshi-Velez and Himabindu Lakkaraju
Off-policy Evaluation (OPE) methods are crucial tools for evaluating policies in high-stakes domains such as healthcare, where direct deployment is often infeasible, unethical, or expensive. When deployment environments are expected to undergo changes (that is, dataset... View Details
Singh, Harvineet, Shalmali Joshi, Finale Doshi-Velez, and Himabindu Lakkaraju. "Towards Robust Off-Policy Evaluation via Human Inputs." Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (2022): 686–699.
- 06 Oct 2015
- First Look
October 6, 2015
upon the Thompson sampling algorithm used for multi-armed bandit problems by incorporating inventory constraints into the pricing decisions. Our algorithm proves to have both... View Details
Keywords: Sean Silverthorne
- 03 Jan 2017
- First Look
January 3, 2017
performance results when compared to other algorithms developed for similar settings. Moreover, we show how our algorithms can be extended for use in general multi-armed bandit... View Details
Keywords: Carmen Nobel
- 20 Mar 2018
- First Look
First Look at New Research and Ideas, March 20, 2018
which builds upon the Thompson sampling algorithm used for multi-armed bandit problems by incorporating inventory constraints into the model and algorithm. Our algorithm proves... View Details
Keywords: Sean Silverthorne
- 21 Nov 2017
- First Look
First Look at New Research and Ideas, November 21, 2017
strong theoretical performance guarantees as well as promising numerical performance results when compared to other algorithms developed for similar settings. Moreover, we show how our algorithms can be... View Details
Keywords: Sean Silverthorne