Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (30) Arrow Down
Filter Results: (30) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (79)
    • Faculty Publications  (30)

    Show Results For

    • All HBS Web  (79)
      • Faculty Publications  (30)

      A/B TestingRemove A/B Testing →

      Page 1 of 30 Results →

      Are you looking for?

      →Search All HBS Web
      • 2024
      • Working Paper

      Advice and the Bayesian Entrepreneur

      By: Susan Cohen and Rembrand Koning
      Bayesian entrepreneurship starts from the premise that entrepreneurs’ beliefs guide their theorizing, experimentation, and choices (Agrawal et al., n.d.). Since each entrepreneur has unique beliefs based on their own set of past experiences, cognitive ability, and... View Details
      Keywords: Entrepreneurship; Decision Choices and Conditions
      Citation
      Read Now
      Related
      Cohen, Susan, and Rembrand Koning. "Advice and the Bayesian Entrepreneur." Harvard Business School Working Paper, No. 25-029, November 2024.
      • 2024
      • Working Paper

      Anytime-Valid Inference in Linear Models and Regression-Adjusted Causal Inference

      By: Michael Lindon, Dae Woong Ham, Martin Tingley and Iavor I. Bojinov
      Linear regression adjustment is commonly used to analyze randomized controlled experiments due to its efficiency and robustness against model misspecification. Current testing and interval estimation procedures leverage the asymptotic distribution of such estimators to... View Details
      Keywords: Mathematical Methods; Analytics and Data Science
      Citation
      Read Now
      Related
      Lindon, Michael, Dae Woong Ham, Martin Tingley, and Iavor I. Bojinov. "Anytime-Valid Inference in Linear Models and Regression-Adjusted Causal Inference." Harvard Business School Working Paper, No. 24-060, March 2024.
      • 2021
      • Working Paper

      Quantifying the Value of Iterative Experimentation

      By: Iavor I Bojinov and Jialiang Mao
      Over the past decade, most technology companies and a growing number of conventional firms have adopted online experimentation (or A/B testing) into their product development process. Initially, A/B testing was deployed as a static procedure in which an experiment was... View Details
      Keywords: Product Development; Value Creation; Research
      Citation
      Read Now
      Related
      Bojinov, Iavor I., and Jialiang Mao. "Quantifying the Value of Iterative Experimentation." Harvard Business School Working Paper, No. 24-059, March 2024.
      • February 2024
      • Module Note

      Data-Driven Marketing in Retail Markets

      By: Ayelet Israeli
      This note describes an eight-class sessions module on data-driven marketing in retail markets. The module aims to familiarize students with core concepts of data-driven marketing in retail, including exploring the opportunities and challenges, adopting best practices,... View Details
      Keywords: Data; Data Analytics; Retail; Retail Analytics; Data Science; Business Analytics; "Marketing Analytics"; Omnichannel; Omnichannel Retailing; Omnichannel Retail; DTC; Direct To Consumer Marketing; Ethical Decision Making; Algorithmic Bias; Privacy; A/B Testing; Descriptive Analytics; Prescriptive Analytics; Predictive Analytics; Analytics and Data Science; E-commerce; Marketing Channels; Demand and Consumers; Marketing Strategy; Retail Industry
      Citation
      Purchase
      Related
      Israeli, Ayelet. "Data-Driven Marketing in Retail Markets." Harvard Business School Module Note 524-062, February 2024.
      • 2023
      • Article

      Balancing Risk and Reward: An Automated Phased Release Strategy

      By: Yufan Li, Jialiang Mao and Iavor Bojinov
      Phased releases are a common strategy in the technology industry for gradually releasing new products or updates through a sequence of A/B tests in which the number of treated units gradually grows until full deployment or deprecation. Performing phased releases in a... View Details
      Keywords: Product Launch; Mathematical Methods; Product Development
      Citation
      Read Now
      Related
      Li, Yufan, Jialiang Mao, and Iavor Bojinov. "Balancing Risk and Reward: An Automated Phased Release Strategy." Advances in Neural Information Processing Systems (NeurIPS) (2023).
      • October 2023 (Revised February 2024)
      • Technical Note

      Design and Evaluation of Targeted Interventions

      By: Eva Ascarza and Ta-Wei (David) Huang
      Targeted interventions serve as a pivotal tool in business strategy, streamlining decisions for enhanced efficiency and effectiveness. This note delves into two central facets of such interventions: first, the design of potent decision guidelines, or targeting... View Details
      Keywords: Marketing; Customer Relationship Management; Analysis; Design; Business Strategy; Retail Industry; Apparel and Accessories Industry; Technology Industry; Financial Services Industry; Telecommunications Industry
      Citation
      Educators
      Purchase
      Related
      Ascarza, Eva, and Ta-Wei (David) Huang. "Design and Evaluation of Targeted Interventions." Harvard Business School Technical Note 524-034, October 2023. (Revised February 2024.)
      • September 2023
      • Supplement

      Design and Evaluation of Targeted Interventions

      By: Eva Ascarza
      Targeted interventions serve as a pivotal tool in business strategy, streamlining decisions for enhanced efficiency and effectiveness. This note delves into two central facets of such interventions: first, the design of potent decision guidelines, or targeting... View Details
      Keywords: Marketing; Design; Business Strategy; Policy; Retail Industry; Apparel and Accessories Industry; Technology Industry; Financial Services Industry; Telecommunications Industry
      Citation
      Purchase
      Related
      Ascarza, Eva. "Design and Evaluation of Targeted Interventions." Harvard Business School Spreadsheet Supplement 524-703, September 2023.
      • June 2023
      • Simulation

      Artea Dashboard and Targeting Policy Evaluation

      By: Ayelet Israeli and Eva Ascarza
      Companies deploy A/B experiments to gain valuable insights about their customers in order to answer strategic business problems. In marketing, A/B tests are often used to evaluate marketing interventions intended to generate incremental outcomes for the firm. The Artea... View Details
      Keywords: Algorithm Bias; Algorithmic Data; Race And Ethnicity; Experimentation; Promotion; Marketing And Society; Big Data; Privacy; Data-driven Management; Data Analysis; Data Analytics; E-Commerce Strategy; Discrimination; Targeted Advertising; Targeted Policies; Pricing Algorithms; A/B Testing; Ethical Decision Making; Customer Base Analysis; Customer Heterogeneity; Coupons; Marketing; Race; Gender; Diversity; Customer Relationship Management; Marketing Communications; Advertising; Decision Making; Ethics; E-commerce; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; United States
      Citation
      Purchase
      Related
      Israeli, Ayelet, and Eva Ascarza. "Artea Dashboard and Targeting Policy Evaluation." Harvard Business School Simulation 523-707, June 2023.
      • September 2022
      • Article

      Experimentation and Start-up Performance: Evidence from A/B Testing

      By: Rembrand Koning, Sharique Hasan and Aaron Chatterji
      Recent scholarship has argued that experimentation should be the organizing principle for entrepreneurial strategy. Experimentation leads to organizational learning, which drives improvements in firm performance. We investigate this proposition by exploiting the... View Details
      Keywords: Experimentation; A/B Testing; Data-driven Decision-making; Organizational Learning; Entrepreneurship; Strategy; Business Startups; Learning; Performance; Decision Making
      Citation
      Find at Harvard
      Read Now
      Related
      Koning, Rembrand, Sharique Hasan, and Aaron Chatterji. "Experimentation and Start-up Performance: Evidence from A/B Testing." Management Science 68, no. 9 (September 2022): 6434–6453.
      • Article

      Online Experimentation: Benefits, Operational and Methodological Challenges, and Scaling Guide

      By: Iavor Bojinov and Somit Gupta
      In the past decade, online controlled experimentation, or A/B testing, at scale has proved to be a significant driver of business innovation. The practice was first pioneered by the technology sector and, more recently, has been adopted by traditional companies... View Details
      Keywords: A/B Testing; Experimentation; Data-driven Culture; Product Development; Innovation and Invention; Digital Transformation
      Citation
      Read Now
      Related
      Bojinov, Iavor, and Somit Gupta. "Online Experimentation: Benefits, Operational and Methodological Challenges, and Scaling Guide." Harvard Data Science Review, no. 4.3 (Summer, 2022).
      • August 2021
      • Case

      Orchadio's First Two Split Experiments

      By: Iavor I. Bojinov, Marco Iansiti and David Lane
      Orchadio, a direct-to-consumer grocery business, needs to conduct its first two A/B tests—one to evaluate the effectiveness and functioning of its newly redesigned website, and one to market-test four versions of a new banner for the website. To do so, it will rely on... View Details
      Keywords: Information Management; Technological Innovation; Knowledge Use and Leverage; Resource Allocation; Marketing; Measurement and Metrics; Customization and Personalization; Information Technology; Internet and the Web; Digital Platforms; Information Technology Industry; Food and Beverage Industry
      Citation
      Educators
      Purchase
      Related
      Bojinov, Iavor I., Marco Iansiti, and David Lane. "Orchadio's First Two Split Experiments." Harvard Business School Case 622-015, August 2021.
      • June 23, 2021
      • Article

      Research: When A/B Testing Doesn't Tell You the Whole Story

      By: Eva Ascarza
      When it comes to churn prevention, marketers traditionally start by identifying which customers are most likely to churn, and then running A/B tests to determine whether a proposed retention intervention will be effective at retaining those high-risk customers. While... View Details
      Keywords: Customer Retention; Churn; Targeting; Market Research; Marketing; Investment Return; Customers; Retention; Research
      Citation
      Find at Harvard
      Register to Read
      Related
      Ascarza, Eva. "Research: When A/B Testing Doesn't Tell You the Whole Story." Harvard Business Review Digital Articles (June 23, 2021).
      • March 2021
      • Supplement

      Artea (A), (B), (C), and (D): Designing Targeting Strategies

      By: Eva Ascarza and Ayelet Israeli
      Power Point Supplement to Teaching Note for HBS No. 521-021,521-022,521-037,521-043. This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on... View Details
      Keywords: Targeted Advertising; Targeting; Algorithmic Data; Bias; A/B Testing; Experiment; Advertising; Gender; Race; Diversity; Marketing; Customer Relationship Management; Prejudice and Bias; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; Technology Industry; United States
      Citation
      Purchase
      Related
      Ascarza, Eva, and Ayelet Israeli. "Artea (A), (B), (C), and (D): Designing Targeting Strategies." Harvard Business School PowerPoint Supplement 521-719, March 2021.
      • February 2021
      • Tutorial

      T-tests: Theory and Practice

      By: Michael Parzen, Natalie Epstein, Chiara Farronato and Michael Toffel
      This video provides an introduction to hypothesis testing, sampling, t-tests, and p-values. It provides examples of A/B testing and t-testing to assess whether difference between two groups are statistically significant. This video can be assigned in conjunction with... View Details
      Keywords: Data Analysis; Data Analytics; Experiment Design; Experimentation; Analytics and Data Science; Analysis
      Citation
      Purchase
      Related
      Parzen, Michael, Natalie Epstein, Chiara Farronato, and Michael Toffel. T-tests: Theory and Practice. Harvard Business School Tutorial 621-707, February 2021.
      • September 2020 (Revised February 2024)
      • Teaching Note

      Artea (A), (B), (C), and (D): Designing Targeting Strategies

      By: Eva Ascarza and Ayelet Israeli
      Teaching Note for HBS No. 521-021,521-022,521-037,521-043. This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and... View Details
      Keywords: Targeted Advertising; Targeting; Race; Gender; Diversity; Marketing; Customer Relationship Management; Prejudice and Bias; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; Technology Industry; United States
      Citation
      Purchase
      Related
      Ascarza, Eva, and Ayelet Israeli. "Artea (A), (B), (C), and (D): Designing Targeting Strategies." Harvard Business School Teaching Note 521-041, September 2020. (Revised February 2024.)
      • September 2020 (Revised July 2022)
      • Exercise

      Artea (B): Including Customer-Level Demographic Data

      By: Eva Ascarza and Ayelet Israeli
      This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and targeting. Parts (B),(C),(D) Introduce algorithmic bias. The... View Details
      Keywords: Targeting; Algorithmic Bias; Race; Gender; Marketing; Diversity; Customer Relationship Management; Demographics; Prejudice and Bias; Retail Industry; Apparel and Accessories Industry; Technology Industry; United States
      Citation
      Purchase
      Related
      Ascarza, Eva, and Ayelet Israeli. "Artea (B): Including Customer-Level Demographic Data." Harvard Business School Exercise 521-022, September 2020. (Revised July 2022.)
      • September 2020 (Revised July 2022)
      • Exercise

      Artea (C): Potential Discrimination through Algorithmic Targeting

      By: Eva Ascarza and Ayelet Israeli
      This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and targeting. Parts (B),(C),(D) Introduce algorithmic bias. The... View Details
      Keywords: Targeting; Algorithmic Bias; Race; Gender; Marketing; Diversity; Customer Relationship Management; Prejudice and Bias; Retail Industry; Apparel and Accessories Industry; Technology Industry; United States
      Citation
      Purchase
      Related
      Ascarza, Eva, and Ayelet Israeli. "Artea (C): Potential Discrimination through Algorithmic Targeting." Harvard Business School Exercise 521-037, September 2020. (Revised July 2022.)
      • September 2020 (Revised July 2022)
      • Exercise

      Artea (D): Discrimination through Algorithmic Bias in Targeting

      By: Eva Ascarza and Ayelet Israeli
      This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and targeting. Parts (B),(C),(D) Introduce algorithmic bias. The... View Details
      Keywords: Targeted Advertising; Discrimination; Algorithmic Data; Bias; Advertising; Race; Gender; Marketing; Diversity; Customer Relationship Management; Prejudice and Bias; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; Technology Industry; United States
      Citation
      Purchase
      Related
      Ascarza, Eva, and Ayelet Israeli. "Artea (D): Discrimination through Algorithmic Bias in Targeting." Harvard Business School Exercise 521-043, September 2020. (Revised July 2022.)
      • September 2020 (Revised June 2023)
      • Exercise

      Artea: Designing Targeting Strategies

      By: Eva Ascarza and Ayelet Israeli
      This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and targeting. Parts (B),(C),(D) Introduce algorithmic bias. The... View Details
      Keywords: Algorithmic Data; Race And Ethnicity; Experimentation; Promotion; "Marketing Analytics"; Marketing And Society; Big Data; Privacy; Data-driven Management; Data Analytics; Data Analysis; E-Commerce Strategy; Discrimination; Targeted Advertising; Targeted Policies; Targeting; Pricing Algorithms; A/B Testing; Ethical Decision Making; Customer Base Analysis; Customer Heterogeneity; Coupons; Algorithmic Bias; Marketing; Race; Gender; Diversity; Customer Relationship Management; Marketing Communications; Advertising; Decision Making; Ethics; E-commerce; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; United States
      Citation
      Purchase
      Related
      Ascarza, Eva, and Ayelet Israeli. "Artea: Designing Targeting Strategies." Harvard Business School Exercise 521-021, September 2020. (Revised June 2023.)
      • September 2020 (Revised June 2023)
      • Supplement

      Spreadsheet Supplement to Artea Teaching Note

      By: Eva Ascarza and Ayelet Israeli
      Spreadsheet Supplement to Artea Teaching Note 521-041. This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and... View Details
      Keywords: Targeted Advertising; Algorithmic Data; Bias; Advertising; Race; Gender; Diversity; Marketing; Customer Relationship Management; Prejudice and Bias; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; Technology Industry; United States
      Citation
      Purchase
      Related
      Ascarza, Eva, and Ayelet Israeli. "Spreadsheet Supplement to Artea Teaching Note." Harvard Business School Spreadsheet Supplement 521-705, September 2020. (Revised June 2023.)
      • 1
      • 2
      • →

      Are you looking for?

      →Search All HBS Web
      ǁ
      Campus Map
      Harvard Business School
      Soldiers Field
      Boston, MA 02163
      →Map & Directions
      →More Contact Information
      • Make a Gift
      • Site Map
      • Jobs
      • Harvard University
      • Trademarks
      • Policies
      • Accessibility
      • Digital Accessibility
      Copyright © President & Fellows of Harvard College.