Filter Results:
(211)
Show Results For
- All HBS Web
(670)
- Faculty Publications (211)
Show Results For
- All HBS Web
(670)
- Faculty Publications (211)
- October 2017
- Case
Quantopian: A New Model for Active Management
Keywords: Big Data; Hedge Fund; Crowdsourcing; Investment Fund; Quantitative Hedge Fun; Algorithmic Data; Analytics and Data Science
Fleiss, Sara, Adi Sunderam, Luis M. Viceira, and Caitlin Carmichael. "Quantopian: A New Model for Active Management." Harvard Business School Case 218-046, October 2017.
- October 2017 (Revised April 2018)
- Case
Improving Worker Safety in the Era of Machine Learning (A)
By: Michael W. Toffel, Dan Levy, Jose Ramon Morales Arilla and Matthew S. Johnson
Managers make predictions all the time: How fast will my markets grow? How much inventory do I need? How intensively should I monitor my suppliers? Which potential customers will be most responsive to a particular marketing campaign? Which job candidates should I... View Details
Keywords: Machine Learning; Policy Implementation; Empirical Research; Inspection; Occupational Safety; Occupational Health; Regulation; Analysis; Forecasting and Prediction; Policy; Operations; Supply Chain Management; Safety; Manufacturing Industry; Construction Industry; United States
Toffel, Michael W., Dan Levy, Jose Ramon Morales Arilla, and Matthew S. Johnson. "Improving Worker Safety in the Era of Machine Learning (A)." Harvard Business School Case 618-019, October 2017. (Revised April 2018.)
- September 2017
- Article
It Doesn't Hurt to Ask: Question-asking Increases Liking
By: K. Huang, M. Yeomans, A.W. Brooks, J. Minson and F. Gino
Conversation is a fundamental human experience, one that is necessary to pursue intrapersonal and interpersonal goals across myriad contexts, relationships, and modes of communication. In the current research, we isolate the role of an understudied conversational... View Details
Keywords: Question-asking; Liking; Responsiveness; Conversation; Natural Language Processing; Interpersonal Communication; Behavior
Huang, K., M. Yeomans, A.W. Brooks, J. Minson, and F. Gino. "It Doesn't Hurt to Ask: Question-asking Increases Liking." Journal of Personality and Social Psychology 113, no. 3 (September 2017): 430–452.
- Article
The Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables
By: Himabindu Lakkaraju, Jon Kleinberg, Jure Leskovec, Jens Ludwig and Sendhil Mullainathan
Lakkaraju, Himabindu, Jon Kleinberg, Jure Leskovec, Jens Ludwig, and Sendhil Mullainathan. "The Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables." Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining 23rd (2017).
- May 2017
- Other Article
Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis
By: Andrew Hill, Po-Ru Loh, Ragu B. Bharadwaj, Pascal Pons, Jingbo Shang, Eva C. Guinan, Karim R. Lakhani, Iain Kilty and Scott Jelinsky
BACKGROUND:
The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes.... View Details
Keywords: Crowdsourcing; Genome-wide Association Study; Logistic Regression; Open Innovation; PLINK; Collaborative Innovation and Invention
Hill, Andrew, Po-Ru Loh, Ragu B. Bharadwaj, Pascal Pons, Jingbo Shang, Eva C. Guinan, Karim R. Lakhani, Iain Kilty, and Scott Jelinsky. "Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis." GigaScience 6, no. 5 (May 2017).
- January 2017 (Revised January 2017)
- Case
Susan Cassidy at Bertram Gilman International
By: Jeffrey T. Polzer and Michael Norris
In 2016, Susan Cassidy, VP of sales and marketing for the packaged foods division at CPG firm Bertram Gilman International, has to make a promotion decision. Should she choose the person she has been grooming for the position or another candidate recommended by central... View Details
Keywords: People Analytics; Algorithms; Promotion Decision; Human Resources; Business Processes; Consumer Products Industry; United States
Polzer, Jeffrey T., and Michael Norris. "Susan Cassidy at Bertram Gilman International." Harvard Business School Case 417-053, January 2017. (Revised January 2017.)
- Winter 2017
- Article
Why Big Data Isn't Enough
By: Sen Chai and Willy C. Shih
There is a growing belief that sophisticated algorithms can explore huge databases and find relationships independent of any preconceived hypotheses. But in businesses that involve scientific research and technological innovation, this approach is misguided and... View Details
Keywords: Big Data; Science-based; Science; Scientific Research; Data Analytics; Data Science; Data-driven Management; Data Scientists; Technological Innovation; Analytics and Data Science; Mathematical Methods; Theory
Chai, Sen, and Willy C. Shih. "Why Big Data Isn't Enough." Art. 58227. MIT Sloan Management Review 58, no. 2 (Winter 2017): 57–61.
- 2016
- Working Paper
Foreign Competition and Domestic Innovation: Evidence from U.S. Patents
By: David Autor, David Dorn, Gordon H. Hanson, Pian Shu and Gary Pisano
Manufacturing is the locus of U.S. innovation, accounting for more than three quarters of U.S. corporate patents. The rise of import competition from China has represented a major competitive shock to the sector, which in theory could benefit or stifle innovation. In... View Details
Keywords: Patents; Competition; System Shocks; Trade; Innovation and Invention; Manufacturing Industry; China; United States
Autor, David, David Dorn, Gordon H. Hanson, Pian Shu, and Gary Pisano. "Foreign Competition and Domestic Innovation: Evidence from U.S. Patents." NBER Working Paper Series, No. 22879, December 2016.
- 18 Nov 2016
- Conference Presentation
Rawlsian Fairness for Machine Learning
By: Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel and Aaron Leon Roth
Motivated by concerns that automated decision-making procedures can unintentionally lead to discriminatory behavior, we study a technical definition of fairness modeled after John Rawls' notion of "fair equality of opportunity". In the context of a simple model of... View Details
Joseph, Matthew, Michael J. Kearns, Jamie Morgenstern, Seth Neel, and Aaron Leon Roth. "Rawlsian Fairness for Machine Learning." Paper presented at the 3rd Workshop on Fairness, Accountability, and Transparency in Machine Learning, Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), November 18, 2016.
- June 2016
- Teaching Note
HubSpot: Lower Churn through Greater CHI
By: Jill Avery, Asis Martinez Jerez and Thomas Steenburgh
HubSpot, a web marketing startup selling inbound marketing software to small- and medium-sized businesses, is under pressure from its venture capital partners to rapidly acquire new customers and to maintain a low level of customer churn. The B2B SaaS company is in the... View Details
- June 2016
- Article
Detecting Figures and Part Labels in Patents: Competition-based Development of Graphics Recognition Algorithms
By: Christoph Riedl, Richard Zanibbi, Marti A. Hearst, Siyu Zhu, Michael Menietti, Jason Crusan, Ivan Metelsky and Karim R. Lakhani
Riedl, Christoph, Richard Zanibbi, Marti A. Hearst, Siyu Zhu, Michael Menietti, Jason Crusan, Ivan Metelsky, and Karim R. Lakhani. "Detecting Figures and Part Labels in Patents: Competition-based Development of Graphics Recognition Algorithms." International Journal on Document Analysis and Recognition (IJDAR) 19, no. 2 (June 2016): 155–172.
- Article
Crowdsourcing City Government: Using Tournaments to Improve Inspection Accuracy
By: Edward Glaeser, Andrew Hillis, Scott Duke Kominers and Michael Luca
The proliferation of big data makes it possible to better target city services like hygiene inspections, but city governments rarely have the in-house talent needed for developing prediction algorithms. Cities could hire consultants, but a cheaper alternative is to... View Details
Keywords: User-generated Content; Operations; Tournaments; Policy-making; Machine Learning; Online Platforms; Analytics and Data Science; Mathematical Methods; City; Infrastructure; Business Processes; Government and Politics
Glaeser, Edward, Andrew Hillis, Scott Duke Kominers, and Michael Luca. "Crowdsourcing City Government: Using Tournaments to Improve Inspection Accuracy." American Economic Review: Papers and Proceedings 106, no. 5 (May 2016): 114–118.
- Spring 2016
- Article
Performance Responses to Competition Across Skill-Levels in Rank Order Tournaments: Field Evidence and Implications for Tournament Design
By: Kevin J. Boudreau, Karim R. Lakhani and Michael E. Menietti
Tournaments are widely used in the economy to organize production and innovation. We study individual contestant-level data from 2,796 contestants in 774 software algorithm design contests with random assignment. Precisely conforming to theory predictions, the... View Details
Boudreau, Kevin J., Karim R. Lakhani, and Michael E. Menietti. "Performance Responses to Competition Across Skill-Levels in Rank Order Tournaments: Field Evidence and Implications for Tournament Design." RAND Journal of Economics 47, no. 1 (Spring 2016): 140–165.
- Winter 2016
- Article
Analytics for an Online Retailer: Demand Forecasting and Price Optimization
By: Kris J. Ferreira, Bin Hong Alex Lee and David Simchi-Levi
We present our work with an online retailer, Rue La La, as an example of how a retailer can use its wealth of data to optimize pricing decisions on a daily basis. Rue La La is in the online fashion sample sales industry, where they offer extremely limited-time... View Details
Ferreira, Kris J., Bin Hong Alex Lee, and David Simchi-Levi. "Analytics for an Online Retailer: Demand Forecasting and Price Optimization." Manufacturing & Service Operations Management 18, no. 1 (Winter 2016): 69–88.
- 2016
- Chapter
Deriving an Optimally Deceptive Policy in Two-Player Iterated Games
By: Elisabeth Paulson and Christopher Griffin
We formulate the problem of determining an optimally deceptive strategy in a repeated game framework. We assume that two players are engaged in repeated play. During an initial time period, Player 1 may deceptively train his opponent to expect a specific strategy. The... View Details
Paulson, Elisabeth, and Christopher Griffin. "Deriving an Optimally Deceptive Policy in Two-Player Iterated Games." In Proceedings of 2016 American Control Conference. IEEE Press, 2016. (Developed with Booz Allen Hamilton.)
- November 2015 (Revised May 2016)
- Case
Aspiring Minds
By: Karim R. Lakhani, Marco Iansiti and Christine Snively
By 2015, India-based employment assessment and certification provider Aspiring Minds had helped facilitate over 300,000 job matches through its assessment tools. Aspiring Minds' flagship product, the Aspiring Minds Computer Adaptive Test (AMCAT), used machine learning... View Details
Keywords: Information Technology; Strategy; Higher Education; Technological Innovation; Employment; Technology Industry; India; China
Lakhani, Karim R., Marco Iansiti, and Christine Snively. "Aspiring Minds." Harvard Business School Case 616-013, November 2015. (Revised May 2016.)
- September 2015
- Article
Design and Implementation of a Privacy Preserving Electronic Health Record Linkage Tool in Chicago
By: Abel Kho, John Cashy, Kathryn Jackson, Adam Pah, Satyender Goel, Jorn Boehnke, John Eric Humphries, Scott Duke Kominers and et al.
Objective
To design and implement a tool that creates a secure, privacy preserving linkage of electronic health record (EHR) data across multiple sites in a large metropolitan area in the United States (Chicago, IL), for use in clinical... View Details
To design and implement a tool that creates a secure, privacy preserving linkage of electronic health record (EHR) data across multiple sites in a large metropolitan area in the United States (Chicago, IL), for use in clinical... View Details
Keywords: Information; Customers; Safety; Rights; Ethics; Entrepreneurship; Health Care and Treatment; Health Industry; Chicago
Kho, Abel, John Cashy, Kathryn Jackson, Adam Pah, Satyender Goel, Jorn Boehnke, John Eric Humphries, Scott Duke Kominers, and et al. "Design and Implementation of a Privacy Preserving Electronic Health Record Linkage Tool in Chicago." Journal of the American Medical Informatics Association 22, no. 5 (September 2015): 1072–1080.
- Article
Search-Based Peer Firms: Aggregating Investor Perceptions Through Internet Co-Searches
By: Charles M.C. Lee, Paul Ma and Charles C.Y. Wang
Applying a "co-search" algorithm to Internet traffic at the SEC's EDGAR website, we develop a novel method for identifying economically-related peer firms and for measuring their relative importance. Our results show that firms appearing in chronologically adjacent... View Details
Keywords: Peer Firm; EDGAR Search Traffic; Revealed Preference; Co-search; Industry Classification; Perception; Internet and the Web; Investment
Lee, Charles M.C., Paul Ma, and Charles C.Y. Wang. "Search-Based Peer Firms: Aggregating Investor Perceptions Through Internet Co-Searches." Journal of Financial Economics 116, no. 2 (May 2015): 410–431.
- March 2015 (Revised June 2015)
- Case
Medalogix
By: Richard G. Hamermesh and Matthew G. Preble
This case examines an exciting new approach to health care that will help care providers identify when hospice services are the appropriate type of care for patients. The company, Medalogix, already has a product on the market that uses a proprietary algorithm to... View Details
Keywords: Health Care; Health Care Entrepreneurship; Health Care Services; Implementing Strategy; Dissemination; Innovation; Market Selection; Health; Health Care and Treatment; Analytics and Data Science; Marketing Strategy; Innovation and Management; Innovation Strategy; Health Industry; United States
Hamermesh, Richard G., and Matthew G. Preble. "Medalogix." Harvard Business School Case 815-116, March 2015. (Revised June 2015.)
- 2015
- Chapter
Optimal Process Control of Symbolic Transfer Functions
By: Christopher Griffin and Elisabeth Paulson
Transfer function modeling is a standard technique in classical Linear Time Invariant and Statistical Process Control. The work of Box and Jenkins was seminal in developing methods for identifying parameters associated with classical (r, s, k) transfer functions.... View Details
Keywords: Transfer Functions; Markov Processes; Stochastic Models; Process Control; Research; Information Technology
Griffin, Christopher, and Elisabeth Paulson. "Optimal Process Control of Symbolic Transfer Functions." In Proceedings of the 10th International Workshop on Feedback Computing. IEEE, 2015.