Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (839) Arrow Down
Filter Results: (839) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (3,486)
    • Faculty Publications  (839)

    Show Results For

    • All HBS Web  (3,486)
      • Faculty Publications  (839)

      MethodsRemove Methods →

      ← Page 6 of 839 Results →

      Are you looking for?

      →Search All HBS Web
      • Article

      Act Like a Scientist: Great Leaders Challenge Assumptions, Run Experiments, and Follow the Evidence

      By: Stefan Thomke and Gary W. Loveman
      Though they’ve been warned for decades about the dangers of overrelying on gut instinct and personal experience, managers keep failing to critically examine—much less challenge—the ideas their decisions are based on. To correct this problem they need to think and act... View Details
      Keywords: Innovation and Management; Decision Making; Science; Leadership Style
      Citation
      Find at Harvard
      Read Now
      Related
      Thomke, Stefan, and Gary W. Loveman. "Act Like a Scientist: Great Leaders Challenge Assumptions, Run Experiments, and Follow the Evidence." Harvard Business Review 100, no. 3 (May–June 2022): 120–129.
      • May 2022
      • Article

      Coins for Bombs: The Predictive Ability of On-Chain Transfers for Terrorist Attacks

      By: Dan Amiram, Evgeny Lyandres and Daniel Rabetti
      This study examines whether we can learn from the behavior of blockchain-based transfers to predict the financing of terrorist attacks. We exploit blockchain transaction transparency to map millions of transfers for hundreds of large on-chain service providers. The... View Details
      Keywords: Blockchain; Bitcoin; Accounting; AI and Machine Learning; National Security; Governing Rules, Regulations, and Reforms
      Citation
      Read Now
      Related
      Amiram, Dan, Evgeny Lyandres, and Daniel Rabetti. "Coins for Bombs: The Predictive Ability of On-Chain Transfers for Terrorist Attacks." Journal of Accounting Research 60, no. 2 (May 2022): 427–466.
      • 2022
      • Article

      Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis.

      By: Martin Pawelczyk, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay and Himabindu Lakkaraju
      As machine learning (ML) models become more widely deployed in high-stakes applications, counterfactual explanations have emerged as key tools for providing actionable model explanations in practice. Despite the growing popularity of counterfactual explanations, a... View Details
      Keywords: Machine Learning Models; Counterfactual Explanations; Adversarial Examples; Mathematical Methods
      Citation
      Read Now
      Related
      Pawelczyk, Martin, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay, and Himabindu Lakkaraju. "Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
      • Article

      How Much Should We Trust Staggered Difference-In-Differences Estimates?

      By: Andrew C. Baker, David F. Larcker and Charles C.Y. Wang
      We explain when and how staggered difference-in-differences regression estimators, commonly applied to assess the impact of policy changes, are biased. These biases are likely to be relevant for a large portion of research settings in finance, accounting, and law that... View Details
      Keywords: Difference In Differences; Staggered Difference-in-differences Designs; Generalized Difference-in-differences; Dynamic Treatment Effects; Mathematical Methods
      Citation
      SSRN
      Find at Harvard
      Read Now
      Related
      Baker, Andrew C., David F. Larcker, and Charles C.Y. Wang. "How Much Should We Trust Staggered Difference-In-Differences Estimates?" Journal of Financial Economics 144, no. 2 (May 2022): 370–395. (Editor's Choice, May 2022; Jensen Prize, First Place, June 2023.)
      • 2022
      • Article

      Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods.

      By: Chirag Agarwal, Marinka Zitnik and Himabindu Lakkaraju
      As Graph Neural Networks (GNNs) are increasingly employed in real-world applications, it becomes critical to ensure that the stakeholders understand the rationale behind their predictions. While several GNN explanation methods have been proposed recently, there has... View Details
      Keywords: Graph Neural Networks; Explanation Methods; Mathematical Methods; Framework; Theory; Analysis
      Citation
      Read Now
      Related
      Agarwal, Chirag, Marinka Zitnik, and Himabindu Lakkaraju. "Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
      • April 12, 2022
      • Article

      Evaluation of Individual and Ensemble Probabilistic Forecasts of COVID-19 Mortality in the United States

      By: Estee Y. Cramer, Evan L. Ray, Velma K. Lopez, Johannes Bracher, Andrea Brennen, Alvaro J. Castro Rivadeneira, Michael Lingzhi Li and et al.
      Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models... View Details
      Keywords: COVID-19; Forecasting and Prediction; Health Pandemics; Mathematical Methods; Partners and Partnerships
      Citation
      Register to Read
      Related
      Cramer, Estee Y., Evan L. Ray, Velma K. Lopez, Johannes Bracher, Andrea Brennen, Alvaro J. Castro Rivadeneira, Michael Lingzhi Li, and et al. "Evaluation of Individual and Ensemble Probabilistic Forecasts of COVID-19 Mortality in the United States." e2113561119. Proceedings of the National Academy of Sciences 119, no. 15 (April 12, 2022). (See full author list here.)
      • 2022
      • Working Paper

      A Linear Panel Model with Heterogeneous Coefficients and Variation in Exposure

      By: Jesse M. Shapiro and Liyang Sun
      Linear panel models featuring unit and time fixed effects appear in many areas of empirical economics. An active literature studies the interpretation of the ordinary least squares estimator of the model, commonly called the two-way fixed effects (TWFE) estimator, in... View Details
      Keywords: Econometric Models; Mathematical Methods
      Citation
      Find at Harvard
      Read Now
      Related
      Shapiro, Jesse M., and Liyang Sun. "A Linear Panel Model with Heterogeneous Coefficients and Variation in Exposure." NBER Working Paper Series, No. 29976, April 2022.
      • April 2022
      • Article

      Predictable Financial Crises

      By: Robin Greenwood, Samuel G. Hanson, Andrei Shleifer and Jakob Ahm Sørensen
      Using historical data on post-war financial crises around the world, we show that crises are substantially predictable. The combination of rapid credit and asset price growth over the prior three years, whether in the nonfinancial business or the household sector, is... View Details
      Keywords: Financial Crisis; Global Range; Forecasting and Prediction; Mathematical Methods
      Citation
      Find at Harvard
      Read Now
      Purchase
      Related
      Greenwood, Robin, Samuel G. Hanson, Andrei Shleifer, and Jakob Ahm Sørensen. "Predictable Financial Crises." Journal of Finance 77, no. 2 (April 2022): 863–921.
      • March 2022 (Revised January 2025)
      • Technical Note

      Linear Regression

      By: Iavor I. Bojinov, Michael Parzen and Paul Hamilton
      This note provides an overview of linear regression for an introductory data science course. It begins with a discussion of correlation, and explains why correlation does not necessarily imply causation. The note then describes the method of least squares, and how to... View Details
      Keywords: Data Science; Linear Regression; Mathematical Modeling; Mathematical Methods; Analytics and Data Science
      Citation
      Educators
      Purchase
      Related
      Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Linear Regression." Harvard Business School Technical Note 622-100, March 2022. (Revised January 2025.)
      • March 2022 (Revised January 2025)
      • Technical Note

      Statistical Inference

      By: Iavor I. Bojinov, Michael Parzen and Paul Hamilton
      This note provides an overview of statistical inference for an introductory data science course. First, the note discusses samples and populations. Next the note describes how to calculate confidence intervals for means and proportions. Then it walks through the logic... View Details
      Keywords: Data Science; Statistics; Mathematical Modeling; Mathematical Methods; Analytics and Data Science
      Citation
      Educators
      Purchase
      Related
      Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Statistical Inference." Harvard Business School Technical Note 622-099, March 2022. (Revised January 2025.)
      • Article

      Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)

      By: Eva Ascarza and Ayelet Israeli

      An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those “protected”... View Details

      Keywords: Algorithm Bias; Personalization; Targeting; Generalized Random Forests (GRF); Discrimination; Customization and Personalization; Decision Making; Fairness; Mathematical Methods
      Citation
      Read Now
      Related
      Ascarza, Eva, and Ayelet Israeli. "Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)." e2115126119. Proceedings of the National Academy of Sciences 119, no. 11 (March 8, 2022).
      • March 2022
      • Article

      Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models

      By: Fiammetta Menchetti and Iavor Bojinov
      Researchers regularly use synthetic control methods for estimating causal effects when a sub-set of units receive a single persistent treatment, and the rest are unaffected by the change. In many applications, however, units not assigned to treatment are nevertheless... View Details
      Keywords: Causal Inference; Partial Interference; Synthetic Controls; Bayesian Structural Time Series; Mathematical Methods
      Citation
      Find at Harvard
      Read Now
      Related
      Menchetti, Fiammetta, and Iavor Bojinov. "Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models." Annals of Applied Statistics 16, no. 1 (March 2022): 414–435.
      • March 2022
      • Article

      Sensitivity Analysis of Agent-based Models: A New Protocol

      By: Emanuele Borgonovo, Marco Pangallo, Jan Rivkin, Leonardo Rizzo and Nicolaj Siggelkow
      Agent-based models (ABMs) are increasingly used in the management sciences. Though useful, ABMs are often critiqued: it is hard to discern why they produce the results they do and whether other assumptions would yield similar results. To help researchers address such... View Details
      Keywords: Agent-based Modeling; Sensitivity Analysis; Design Of Experiments; Total Order Sensitivity Indices; Organizations; Behavior; Decision Making; Mathematical Methods
      Citation
      Read Now
      Related
      Borgonovo, Emanuele, Marco Pangallo, Jan Rivkin, Leonardo Rizzo, and Nicolaj Siggelkow. "Sensitivity Analysis of Agent-based Models: A New Protocol." Computational and Mathematical Organization Theory 28, no. 1 (March 2022): 52–94.
      • March 2022
      • Article

      Targeting High Ability Entrepreneurs Using Community Information: Mechanism Design in the Field

      By: Reshmaan Hussam, Natalia Rigol and Benjamin N. Roth
      Identifying high-growth microentrepreneurs in low-income countries remains a challenge due to a scarcity of verifiable information. With a cash grant experiment in India we demonstrate that community knowledge can help target high-growth microentrepreneurs; while the... View Details
      Keywords: Microentrepreneurs; Community Information; Field Experiment; Loans; Entrepreneurship; Developing Countries and Economies; Financing and Loans; Information; Mathematical Methods; India
      Citation
      Find at Harvard
      Read Now
      Related
      Hussam, Reshmaan, Natalia Rigol, and Benjamin N. Roth. "Targeting High Ability Entrepreneurs Using Community Information: Mechanism Design in the Field." American Economic Review 112, no. 3 (March 2022): 861–898.
      (Online Appendix with Corrigendum—Thanks to Isabella Masetto, Diego Ubfal, and The Institute for Replication for identifying a minor coding error in the production of Table 4.)
      • March 2022
      • Article

      Where to Locate COVID-19 Mass Vaccination Facilities?

      By: Dimitris Bertsimas, Vassilis Digalakis Jr, Alexander Jacquillat, Michael Lingzhi Li and Alessandro Previero
      The outbreak of COVID-19 led to a record-breaking race to develop a vaccine. However, the limited vaccine capacity creates another massive challenge: how to distribute vaccines to mitigate the near-end impact of the pandemic? In the United States in particular, the new... View Details
      Keywords: Vaccines; COVID-19; Health Care and Treatment; Health Pandemics; Performance Effectiveness; Analytics and Data Science; Mathematical Methods
      Citation
      Read Now
      Related
      Bertsimas, Dimitris, Vassilis Digalakis Jr, Alexander Jacquillat, Michael Lingzhi Li, and Alessandro Previero. "Where to Locate COVID-19 Mass Vaccination Facilities?" Naval Research Logistics Quarterly 69, no. 2 (March 2022): 179–200.
      • 2022
      • Working Paper

      The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective

      By: Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu and Himabindu Lakkaraju
      As various post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to develop a deeper understanding of if and when the explanations output by these methods disagree with each other, and how... View Details
      Keywords: AI and Machine Learning; Analytics and Data Science; Mathematical Methods
      Citation
      Read Now
      Related
      Krishna, Satyapriya, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu, and Himabindu Lakkaraju. "The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective." Working Paper, 2022.
      • 2022
      • Article

      Improving Efficiency and Reducing Costs of MRI-Guided Prostate Brachytherapy Using Time-Driven Activity-Based Costing

      By: Nikhil G. Thaker, Rajat J. Kudchadker, James R. Incalcaterra, Tharakeswara K. Bathala, Robert S. Kaplan, Ankit Agarwal, Deborah A. Kuban, Benjamin D. Frank, Prajnan Das, Thomas W. Feeley and Steven J. Frank
      Integrated quality improvement (QI) and cost reduction strategies can help increase value in cancer care. We applied standard QI and TDABC methods to improve workflow efficiency and reduce costs for MRI-guided prostate brachytherapy. We constructed process maps,... View Details
      Keywords: Brachytherapy; Quality Improvement; Prostate; Time-Driven Activity-Based Costing; Cost Accounting; Health Care and Treatment; Performance Efficiency; Health Industry
      Citation
      Read Now
      Related
      Thaker, Nikhil G., Rajat J. Kudchadker, James R. Incalcaterra, Tharakeswara K. Bathala, Robert S. Kaplan, Ankit Agarwal, Deborah A. Kuban, Benjamin D. Frank, Prajnan Das, Thomas W. Feeley, and Steven J. Frank. "Improving Efficiency and Reducing Costs of MRI-Guided Prostate Brachytherapy Using Time-Driven Activity-Based Costing." Brachytherapy 21, no. 1 (2022): 49–54.
      • Article

      Pattern Detection in the Activation Space for Identifying Synthesized Content

      By: Celia Cintas, Skyler Speakman, Girmaw Abebe Tadesse, Victor Akinwande, Edward McFowland III and Komminist Weldemariam
      Generative Adversarial Networks (GANs) have recently achieved unprecedented success in photo-realistic image synthesis from low-dimensional random noise. The ability to synthesize high-quality content at a large scale brings potential risks as the generated samples may... View Details
      Keywords: Subset Scanning; Generative Models; Synthetic Content Detection
      Citation
      Register to Read
      Related
      Cintas, Celia, Skyler Speakman, Girmaw Abebe Tadesse, Victor Akinwande, Edward McFowland III, and Komminist Weldemariam. "Pattern Detection in the Activation Space for Identifying Synthesized Content." Pattern Recognition Letters 153 (January 2022): 207–213.
      • 2022
      • Working Paper

      TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations

      By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
      Practitioners increasingly use machine learning (ML) models, yet they have become more complex and harder to understand. To address this issue, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use explainability... View Details
      Keywords: Natural Language Conversations; Predictive Models; AI and Machine Learning
      Citation
      Read Now
      Related
      Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations." Working Paper, 2022.
      • 2021
      • Working Paper

      Caccia Selvaggia: Myth, Rites, and the Right in Carlo Ginzburg's Storia notturna

      By: Robert Fredona and Sophus A. Reinert
      Carlo Ginzburg (b. 1939) is widely considered one of Europe’s leading historians. His masterpiece Storia notturna (Turin: Einaudi, 1989), widely praised for its extraordinary erudition and creativity, is now over three decades old but it continues to inspire... View Details
      Keywords: Mythology; Culture; Political Doctrine; History; Government and Politics; Society
      Citation
      Read Now
      Related
      Fredona, Robert, and Sophus A. Reinert. "Caccia Selvaggia: Myth, Rites, and the Right in Carlo Ginzburg's Storia notturna." Harvard Business School Working Paper, No. 22-041, December 2021.
      • ←
      • 6
      • 7
      • …
      • 41
      • 42
      • →

      Are you looking for?

      →Search All HBS Web
      ǁ
      Campus Map
      Harvard Business School
      Soldiers Field
      Boston, MA 02163
      →Map & Directions
      →More Contact Information
      • Make a Gift
      • Site Map
      • Jobs
      • Harvard University
      • Trademarks
      • Policies
      • Accessibility
      • Digital Accessibility
      Copyright © President & Fellows of Harvard College.