Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (936) Arrow Down
Filter Results: (936) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (1,543)
    • People  (1)
    • News  (274)
    • Research  (936)
    • Events  (19)
    • Multimedia  (6)
  • Faculty Publications  (771)

Show Results For

  • All HBS Web  (1,543)
    • People  (1)
    • News  (274)
    • Research  (936)
    • Events  (19)
    • Multimedia  (6)
  • Faculty Publications  (771)
← Page 6 of 936 Results →
Sort by

Are you looking for?

→Search All HBS Web
  • 2019
  • Working Paper

Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles

By: Prithwiraj Choudhury, Dan Wang, Natalie A. Carlson and Tarun Khanna
We demonstrate how a novel synthesis of three methods—(1) unsupervised topic modeling of text data to generate new measures of textual variance, (2) sentiment analysis of text data, and (3) supervised ML coding of facial images with a cutting-edge convolutional neural... View Details
Keywords: Spoken Communication; Business History; Analytics and Data Science; Finance; Performance
Citation
Read Now
Related
Choudhury, Prithwiraj, Dan Wang, Natalie A. Carlson, and Tarun Khanna. "Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles." Harvard Business School Working Paper, No. 18-064, January 2018. (Revised May 2019.)
  • August 2023
  • Article

Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel

By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet models have become more complex and harder to understand. To understand complex models, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use... View Details
Keywords: AI and Machine Learning; Technological Innovation; Technology Adoption
Citation
Read Now
Related
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel." Nature Machine Intelligence 5, no. 8 (August 2023): 873–883.
  • 30 Nov 2017
  • Conference Presentation

From Pixels to Moral Judgment: Extracting Morally Relevant Information in Minds and Machines

By: Julian De Freitas
Citation
Related
De Freitas, Julian. "From Pixels to Moral Judgment: Extracting Morally Relevant Information in Minds and Machines." Paper presented at the Cognition, Brain, & Behavior Research Seminar, Harvard University, Cambridge, MA, November 30, 2017.
  • Article

Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness

By: Michael J Kearns, Seth Neel, Aaron Leon Roth and Zhiwei Steven Wu
The most prevalent notions of fairness in machine learning are statistical definitions: they fix a small collection of pre-defined groups, and then ask for parity of some statistic of the classifier (like classification rate or false positive rate) across these groups.... View Details
Keywords: Machine Learning; Algorithms; Fairness; Mathematical Methods
Citation
Read Now
Related
Kearns, Michael J., Seth Neel, Aaron Leon Roth, and Zhiwei Steven Wu. "Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness." Proceedings of the International Conference on Machine Learning (ICML) 35th (2018).
  • 2024
  • Article

Neyman Meets Causal Machine Learning: Experimental Evaluation of Individualized Treatment Rules

By: Michael Lingzhi Li and Kosuke Imai
A century ago, Neyman showed how to evaluate the efficacy of treatment using a randomized experiment under a minimal set of assumptions. This classical repeated sampling framework serves as a basis of routine experimental analyses conducted by today’s scientists across... View Details
Keywords: AI and Machine Learning; Research
Citation
Read Now
Related
Li, Michael Lingzhi, and Kosuke Imai. "Neyman Meets Causal Machine Learning: Experimental Evaluation of Individualized Treatment Rules." Journal of Causal Inference 12, no. 1 (2024).
  • Article

Robust and Stable Black Box Explanations

By: Himabindu Lakkaraju, Nino Arsov and Osbert Bastani
As machine learning black boxes are increasingly being deployed in real-world applications, there has been a growing interest in developing post hoc explanations that summarize the behaviors of these black boxes. However, existing algorithms for generating such... View Details
Keywords: Machine Learning; Black Box Models; Framework
Citation
Read Now
Related
Lakkaraju, Himabindu, Nino Arsov, and Osbert Bastani. "Robust and Stable Black Box Explanations." Proceedings of the International Conference on Machine Learning (ICML) 37th (2020): 5628–5638. (Published in PMLR, Vol. 119.)
  • December 1992 (Revised October 1993)
  • Case

BMW: The Ultimate Driving Machine Seeks to De-Yuppify Itself

By: Stephen A. Greyser and Wendy Smith Schille
Tracks changes in the luxury auto market during the 1980s and early 1990s. Shifts in target consumer behavior--particularly the yuppie lifestyle--serve as the basis for manufacturer modifications of product line, positioning, and advertising. The climax of the case is... View Details
Keywords: Advertising; Change Management; Transformation; Brands and Branding; Product Positioning; Production; Luxury; Segmentation; Auto Industry
Citation
Educators
Purchase
Related
Greyser, Stephen A., and Wendy Smith Schille. "BMW: The Ultimate Driving Machine Seeks to De-Yuppify Itself." Harvard Business School Case 593-046, December 1992. (Revised October 1993.)
  • October 1999
  • Teaching Note

Braun AG: The KF 40 Coffee Machine (Abridged) TN

By: Kim B. Clark and Steven C. Wheelwright
Teaching Note for a reprint. View Details
Keywords: Product Development; Design; Markets; Decision Choices and Conditions; Reputation; Groups and Teams; Manufacturing Industry; Germany
Citation
Purchase
Related
Clark, Kim B., and Steven C. Wheelwright. "Braun AG: The KF 40 Coffee Machine (Abridged) TN." Harvard Business School Teaching Note 600-049, October 1999.
  • July 2005
  • Teaching Note

Globalizing Consumer Durables: Singer Sewing Machine before 1914 (TN)

By: Geoffrey G. Jones
Teaching Note to (9-804-001). View Details
Keywords: Global Strategy; Multinational Firms and Management; Factories, Labs, and Plants; Investment; Sales; Entrepreneurship; Success; Production; Marketing; Manufacturing Industry; United States; Russia; Scotland
Citation
Purchase
Related
Jones, Geoffrey G. "Globalizing Consumer Durables: Singer Sewing Machine before 1914 (TN)." Harvard Business School Teaching Note 806-026, July 2005.
  • 2020
  • Book

Work, Mate, Marry, Love: How Machines Shape Our Human Destiny

By: Debora L. Spar
Covering a time frame that ranges from 8000 BC to the present, and drawing upon both Marxist and feminist theories, the book argues that nearly all the decisions we make in our most intimate lives—whom to marry, how to have children, how to have sex, how to think about... View Details
Keywords: Innovation; Family; Women; Reproduction; Artificial Intelligence; Robots; Gender; Demography; History; Innovation and Invention; Relationships; Society; Information Technology; AI and Machine Learning; Biotechnology Industry; Computer Industry; Health Industry; Information Technology Industry; Manufacturing Industry; Technology Industry; Africa; Asia; Europe; Latin America; North and Central America
Citation
Purchase
Related
Spar, Debora L. Work, Mate, Marry, Love: How Machines Shape Our Human Destiny. New York: Farrar, Straus and Giroux, 2020.
  • 2021
  • Working Paper

Time and the Value of Data

By: Ehsan Valavi, Joel Hestness, Newsha Ardalani and Marco Iansiti

Managers often believe that collecting more data will continually improve the accuracy of their machine learning models. However, we argue in this paper that when data lose relevance over time, it may be optimal to collect a limited amount of recent data instead of... View Details

Keywords: Economics Of AI; Machine Learning; Non-stationarity; Perishability; Value Depreciation; Analytics and Data Science; Value
Citation
SSRN
Read Now
Related
Valavi, Ehsan, Joel Hestness, Newsha Ardalani, and Marco Iansiti. "Time and the Value of Data." Harvard Business School Working Paper, No. 21-016, August 2020. (Revised November 2021.)
  • April 2018 (Revised February 2019)
  • Supplement

Improving Worker Safety in the Era of Machine Learning (B)

By: Michael W. Toffel, Dan Levy, Astrid Camille Pineda, Jose Ramon Morales Arilla and Matthew S. Johnson
Supplements the (A) case. View Details
Citation
Purchase
Related
Toffel, Michael W., Dan Levy, Astrid Camille Pineda, Jose Ramon Morales Arilla, and Matthew S. Johnson. "Improving Worker Safety in the Era of Machine Learning (B)." Harvard Business School Supplement 618-064, April 2018. (Revised February 2019.)
  • Fall 1997
  • Article

Little Machines in Their Gardens: A History of School Gardens in America, 1891 to 1920

By: Brian Trelstad
“Little Machines in their Gardens: A History of School Gardens in America, 1891 to 1920” explores the rise and decline of the school garden movement in the United States. The paper first documents the early history of the gardens and establishes them as a national... View Details
Keywords: School Garden Movement; United States
Citation
Find at Harvard
Related
Trelstad, Brian. "Little Machines in Their Gardens: A History of School Gardens in America, 1891 to 1920." Landscape Journal 16, no. 2 (Fall 1997): 161–173.
  • 2024
  • Working Paper

Empirical Guidance: Data Processing and Analysis with Applications in Stata, R, and Python

By: Melissa Ouellet and Michael W. Toffel
This paper describes a range of best practices to compile and analyze datasets, and includes some examples in Stata, R, and Python. It is meant to serve as a reference for those getting started in econometrics, and especially those seeking to conduct data analyses in... View Details
Keywords: Empirical Methods; Empirical Operations; Statistical Methods And Machine Learning; Statistical Interferences; Research Analysts; Analytics and Data Science; Mathematical Methods
Citation
SSRN
Read Now
Related
Ouellet, Melissa, and Michael W. Toffel. "Empirical Guidance: Data Processing and Analysis with Applications in Stata, R, and Python." Harvard Business School Working Paper, No. 25-010, August 2024.
  • Article

Developing a Digital Mindset: How to Lead Your Organization into the Age of Data, Algorithms, and AI

By: Tsedal Neeley and Paul Leonardi
Learning new technological skills is essential for digital transformation. But it is not enough. Employees must be motivated to use their skills to create new opportunities. They need a digital mindset: a set of attitudes and behaviors that enable people and... View Details
Keywords: Machine Learning; AI; Information Technology; Transformation; Competency and Skills; Employees; Technology Adoption; Leading Change; Digital Transformation
Citation
Find at Harvard
Read Now
Purchase
Related
Neeley, Tsedal, and Paul Leonardi. "Developing a Digital Mindset: How to Lead Your Organization into the Age of Data, Algorithms, and AI." S22032. Harvard Business Review 100, no. 3 (May–June 2022): 50–55.
  • Article

Towards Robust and Reliable Algorithmic Recourse

By: Sohini Upadhyay, Shalmali Joshi and Himabindu Lakkaraju
As predictive models are increasingly being deployed in high-stakes decision making (e.g., loan approvals), there has been growing interest in post-hoc techniques which provide recourse to affected individuals. These techniques generate recourses under the assumption... View Details
Keywords: Machine Learning Models; Algorithmic Recourse; Decision Making; Forecasting and Prediction
Citation
Read Now
Related
Upadhyay, Sohini, Shalmali Joshi, and Himabindu Lakkaraju. "Towards Robust and Reliable Algorithmic Recourse." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
  • 2025
  • Article

Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments

By: Kosuke Imai and Michael Lingzhi Li
Researchers are increasingly turning to machine learning (ML) algorithms to investigate causal heterogeneity in randomized experiments. Despite their promise, ML algorithms may fail to accurately ascertain heterogeneous treatment effects under practical settings with... View Details
Keywords: AI and Machine Learning; Mathematical Methods; Analytics and Data Science
Citation
Find at Harvard
Read Now
Related
Imai, Kosuke, and Michael Lingzhi Li. "Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments." Journal of Business & Economic Statistics 43, no. 1 (2025): 256–268.
  • 2022
  • Article

Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis.

By: Martin Pawelczyk, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay and Himabindu Lakkaraju
As machine learning (ML) models become more widely deployed in high-stakes applications, counterfactual explanations have emerged as key tools for providing actionable model explanations in practice. Despite the growing popularity of counterfactual explanations, a... View Details
Keywords: Machine Learning Models; Counterfactual Explanations; Adversarial Examples; Mathematical Methods
Citation
Read Now
Related
Pawelczyk, Martin, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay, and Himabindu Lakkaraju. "Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
  • April 2024
  • Article

A Machine Learning Algorithm Predicting Risk of Dilating VUR among Infants with Hydronephrosis Using UTD Classification

By: Hsin-Hsiao Scott Wang, Michael Lingzhi Li, Dylan Cahill, John Panagides, Tanya Logvinenko, Jeanne Chow and Caleb Nelson
Backgrounds: Urinary Tract Dilation (UTD) classification has been designed to be a more objective grading system to evaluate antenatal and post-natal UTD. Due to unclear association between UTD classifications to specific anomalies such as vesico-ureteral reflux (VUR),... View Details
Keywords: Health Disorders; Health Testing and Trials; AI and Machine Learning; Health Industry
Citation
Read Now
Related
Wang, Hsin-Hsiao Scott, Michael Lingzhi Li, Dylan Cahill, John Panagides, Tanya Logvinenko, Jeanne Chow, and Caleb Nelson. "A Machine Learning Algorithm Predicting Risk of Dilating VUR among Infants with Hydronephrosis Using UTD Classification." Journal of Pediatric Urology 20, no. 2 (April 2024): 271–278.
  • May 2001
  • Teaching Note

Coca-Cola's New Vending Machine (A): Pricing to Capture Value, or Not? TN

By: Charles King III and Das Narayandas
Teaching Note for (9-500-068). View Details
Purchase
Related
  • ←
  • 6
  • 7
  • …
  • 46
  • 47
  • →

Are you looking for?

→Search All HBS Web
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.