Filter Results:
(2,829)
Show Results For
- All HBS Web
(2,829)
- People (14)
- News (647)
- Research (1,560)
- Events (19)
- Multimedia (9)
- Faculty Publications (830)
Show Results For
- All HBS Web
(2,829)
- People (14)
- News (647)
- Research (1,560)
- Events (19)
- Multimedia (9)
- Faculty Publications (830)
- May 2007
- Article
Multi-agent Learning and the Descriptive Value of Simple Models
By: Ido Erev and Alvin E. Roth
Keywords: Value
Erev, Ido, and Alvin E. Roth. "Multi-agent Learning and the Descriptive Value of Simple Models." Special Issue on Foundations of Multi-Agent Learning. Artificial Intelligence 171, no. 7 (May 2007): 423–428.
- 2024
- Working Paper
Scaling Core Earnings Measurement with Large Language Models
By: Matthew Shaffer and Charles CY Wang
We study the application of large language models (LLMs) to the estimation of core earnings, i.e., a firm's persistent profitability from its core business activities. This construct is central to investors' assessments of economic performance and valuations. However,... View Details
Keywords: Large Language Models; AI and Machine Learning; Accounting; Profit; Corporate Disclosure; Analytics and Data Science; Measurement and Metrics
Shaffer, Matthew, and Charles CY Wang. "Scaling Core Earnings Measurement with Large Language Models." Working Paper, November 2024.
- 11 Feb 2019
- Blog Post
John Bracaglia, MBA 2020: “I Want to Find the Machine Learning Strategy That Avoids the Pitfalls While Fulfilling the Promise.”
For John Bracaglia, his academic and professional careers have been driven by two themes: “machine learning and behavioral economics,” he says. “The two work together. Machine View Details
- Research Summary
Overview
Jenny is broadly interested in interpretable machine learning (ML), identity and inequality, and improving existing methods used to answer social and policy-relevant questions. Her recent projects have focused on developing tools that explore how LLMs are reshaping... View Details
- Article
Developing a Digital Mindset: How to Lead Your Organization into the Age of Data, Algorithms, and AI
By: Tsedal Neeley and Paul Leonardi
Learning new technological skills is essential for digital transformation. But it is not enough. Employees must be motivated to use their skills to create new opportunities. They need a digital mindset: a set of attitudes and behaviors that enable people and... View Details
Keywords: Machine Learning; AI; Information Technology; Transformation; Competency and Skills; Employees; Technology Adoption; Leading Change; Digital Transformation
Neeley, Tsedal, and Paul Leonardi. "Developing a Digital Mindset: How to Lead Your Organization into the Age of Data, Algorithms, and AI." S22032. Harvard Business Review 100, no. 3 (May–June 2022): 50–55.
- 2024
- Conference Paper
Quantifying Uncertainty in Natural Language Explanations of Large Language Models
By: Himabindu Lakkaraju, Sree Harsha Tanneru and Chirag Agarwal
Large Language Models (LLMs) are increasingly used as powerful tools for several
high-stakes natural language processing (NLP) applications. Recent prompting
works claim to elicit intermediate reasoning steps and key tokens that serve as
proxy explanations for LLM... View Details
Lakkaraju, Himabindu, Sree Harsha Tanneru, and Chirag Agarwal. "Quantifying Uncertainty in Natural Language Explanations of Large Language Models." Paper presented at the Society for Artificial Intelligence and Statistics, 2024.
- January 2024 (Revised February 2024)
- Case
Data-Driven Denim: Financial Forecasting at Levi Strauss
By: Mark Egan
The case examines Levi Strauss’ journey in implementing machine learning and AI into its financial forecasting process. The apparel company partnered with the IT company Wipro in 2017 to develop a machine learning algorithm that could help Levi Strauss forecast its... View Details
Keywords: Investor Relations; Forecasting; Machine Learning; Artificial Intelligence; Apparel; Corporate Finance; Forecasting and Prediction; AI and Machine Learning; Digital Transformation; Apparel and Accessories Industry; United States
Egan, Mark. "Data-Driven Denim: Financial Forecasting at Levi Strauss." Harvard Business School Case 224-029, January 2024. (Revised February 2024.)
- 2015
- Article
A Machine Learning Framework to Identify Students at Risk of Adverse Academic Outcomes
By: Himabindu Lakkaraju, Everaldo Aguiar, Carl Shan, David Miller, Nasir Bhanpuri, Rayid Ghani and Kecia Addison
Lakkaraju, Himabindu, Everaldo Aguiar, Carl Shan, David Miller, Nasir Bhanpuri, Rayid Ghani, and Kecia Addison. "A Machine Learning Framework to Identify Students at Risk of Adverse Academic Outcomes." Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining 21st (2015).
- February 2024
- Teaching Note
Data-Driven Denim: Financial Forecasting at Levi Strauss
By: Mark Egan
Teaching Note for HBS Case No. 224-029. Levi Strauss & Co. (“Levi Strauss”) partnered with the IT services company Wipro to incorporate more sophisticated methods, such as machine learning, into their financial forecasting process starting in 2018. The decision to... View Details
- Teaching Interest
Overview
I served as a Teaching Fellow for the Applied Business Analytics second-year MBA course. This course sought to teach MBA students how businesses can improve their strategic decisions using statistics and machine learning techniques. (e.g., regression models, random... View Details
- April 29, 2020
- Article
The Case for AI Insurance
By: Ram Shankar Siva Kumar and Frank Nagle
When organizations place machine learning systems at the center of their businesses, they introduce the risk of failures that could lead to a data breach, brand damage, property damage, business interruption, and in some cases, bodily harm. Even when companies are... View Details
Keywords: Artificial Intelligence; Machine Learning; Internet and the Web; Safety; Insurance; AI and Machine Learning; Cybersecurity
Kumar, Ram Shankar Siva, and Frank Nagle. "The Case for AI Insurance." Harvard Business Review Digital Articles (April 29, 2020).
- 25 Sep 2015
- Working Paper Summaries
Invest in Information or Wing It? A Model of Dynamic Pricing with Seller Learning
- Article
From Orientation to Behavior: The Interplay Between Learning Orientation, Open-mindedness, and Psychological Safety in Team Learning
By: Jean-François Harvey, Kevin J. Johnson, Kathryn S. Roloff and Amy C. Edmondson
Do teams with motivation to learn actually engage in the behaviors that produce learning? Though team learning orientation has been found to be positively related to team learning, we know little about how and when it actually fosters team learning. It is obviously not... View Details
Keywords: Emergent States; Goal Orientation; Open-mindedness; Psychological Safety; Team Learning; Teams; Groups and Teams; Learning; Goals and Objectives
Harvey, Jean-François, Kevin J. Johnson, Kathryn S. Roloff, and Amy C. Edmondson. "From Orientation to Behavior: The Interplay Between Learning Orientation, Open-mindedness, and Psychological Safety in Team Learning." Human Relations 72, no. 11 (November 2019): 1726–1751.
- February 2018 (Revised June 2021)
- Case
New Constructs: Disrupting Fundamental Analysis with Robo-Analysts
By: Charles C.Y. Wang and Kyle Thomas
This case highlights the business challenges associated with a financial technology firm, New Constructs, that created a technology that can quickly parse complicated public firm financials to paint a clearer economic picture of firms, remove accounting distortions,... View Details
Keywords: Fundamental Analysis; Machine Learning; Robo-analysts; Financial Statements; Financial Reporting; Analysis; Information Technology; Accounting Industry; Financial Services Industry; Information Technology Industry; North America; Tennessee
Wang, Charles C.Y., and Kyle Thomas. "New Constructs: Disrupting Fundamental Analysis with Robo-Analysts." Harvard Business School Case 118-068, February 2018. (Revised June 2021.)
- June 2024
- Article
Rationalizing Outcomes: Interdependent Learning in Competitive Markets
By: Anoop R. Menon and Dennis Yao
In this article we use simulation models to explore interdependent learning in competitive markets. Such interactions require attention to both the mental representations held by the management of the focal firm as well as the beliefs of that management about the... View Details
Keywords: Mental Models; Strategic Interactions; Rationalization; Explanation-based View; Competition
Menon, Anoop R., and Dennis Yao. "Rationalizing Outcomes: Interdependent Learning in Competitive Markets." Strategy Science 9, no. 2 (June 2024): 97–117.
- 2014
- Working Paper
Modeling Money Market Spreads: What Do We Learn about Refinancing Risk?
By: Vincent Brousseau, Kleopatra Nikolaou and Huw Pill
Brousseau, Vincent, Kleopatra Nikolaou, and Huw Pill. "Modeling Money Market Spreads: What Do We Learn about Refinancing Risk?" Finance and Economics Discussion Series (Federal Reserve Board), No. 2014-112, November 2014.
- 27 Dec 2018
- Working Paper Summaries
Team Learning Capabilities: A Meso Model of Sustained Innovation and Superior Firm Performance
- 2023
- Article
Benchmarking Large Language Models on CMExam—A Comprehensive Chinese Medical Exam Dataset
By: Junling Liu, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin Wang, Chenyu You, Zhenhua Guo, Lei Zhu and Michael Lingzhi Li
Recent advancements in large language models (LLMs) have transformed the field of question answering (QA). However, evaluating LLMs in the medical field is challenging due to the lack of standardized and comprehensive datasets. To address this gap, we introduce CMExam,... View Details
Keywords: Large Language Model; AI and Machine Learning; Analytics and Data Science; Health Industry
Liu, Junling, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin Wang, Chenyu You, Zhenhua Guo, Lei Zhu, and Michael Lingzhi Li. "Benchmarking Large Language Models on CMExam—A Comprehensive Chinese Medical Exam Dataset." Conference on Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks Track 36 (2023).
- Research Summary
Understanding the Limitations of Model Explanations
The goal of this research is to understand how adversaries can exploit various algorithms used for explaining complex machine learning models with an intention to mislead end users. For instance, can adversaries trick these algorithms into masking their racial and... View Details