Filter Results:
(878)
Show Results For
- All HBS Web
(5,466)
- Faculty Publications (878)
Show Results For
- All HBS Web
(5,466)
- Faculty Publications (878)
- 2022
- Article
Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis.
By: Martin Pawelczyk, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay and Himabindu Lakkaraju
As machine learning (ML) models become more widely deployed in high-stakes applications, counterfactual explanations have emerged as key tools for providing actionable model explanations in practice. Despite the growing popularity of counterfactual explanations, a... View Details
Keywords: Machine Learning Models; Counterfactual Explanations; Adversarial Examples; Mathematical Methods
Pawelczyk, Martin, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay, and Himabindu Lakkaraju. "Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
- Article
How Much Should We Trust Staggered Difference-In-Differences Estimates?
By: Andrew C. Baker, David F. Larcker and Charles C.Y. Wang
We explain when and how staggered difference-in-differences regression estimators, commonly applied to assess the impact of policy changes, are biased. These biases are likely to be relevant for a large portion of research settings in finance, accounting, and law that... View Details
Keywords: Difference In Differences; Staggered Difference-in-differences Designs; Generalized Difference-in-differences; Dynamic Treatment Effects; Mathematical Methods
Baker, Andrew C., David F. Larcker, and Charles C.Y. Wang. "How Much Should We Trust Staggered Difference-In-Differences Estimates?" Journal of Financial Economics 144, no. 2 (May 2022): 370–395. (Editor's Choice, May 2022; Jensen Prize, First Place, June 2023.)
- 2022
- Article
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods.
By: Chirag Agarwal, Marinka Zitnik and Himabindu Lakkaraju
As Graph Neural Networks (GNNs) are increasingly employed in real-world applications, it becomes critical to ensure that the stakeholders understand the rationale behind their predictions. While several GNN explanation methods have been proposed recently, there has... View Details
Keywords: Graph Neural Networks; Explanation Methods; Mathematical Methods; Framework; Theory; Analysis
Agarwal, Chirag, Marinka Zitnik, and Himabindu Lakkaraju. "Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
- April 12, 2022
- Article
Evaluation of Individual and Ensemble Probabilistic Forecasts of COVID-19 Mortality in the United States
By: Estee Y. Cramer, Evan L. Ray, Velma K. Lopez, Johannes Bracher, Andrea Brennen, Alvaro J. Castro Rivadeneira, Michael Lingzhi Li and et al.
Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models... View Details
Keywords: COVID-19; Forecasting and Prediction; Health Pandemics; Mathematical Methods; Partners and Partnerships
Cramer, Estee Y., Evan L. Ray, Velma K. Lopez, Johannes Bracher, Andrea Brennen, Alvaro J. Castro Rivadeneira, Michael Lingzhi Li, and et al. "Evaluation of Individual and Ensemble Probabilistic Forecasts of COVID-19 Mortality in the United States." e2113561119. Proceedings of the National Academy of Sciences 119, no. 15 (April 12, 2022). (See full author list here.)
- 2022
- Working Paper
A Linear Panel Model with Heterogeneous Coefficients and Variation in Exposure
By: Jesse M. Shapiro and Liyang Sun
Linear panel models featuring unit and time fixed effects appear in many areas of empirical economics. An active literature studies the interpretation of the ordinary least squares estimator of the model, commonly called the two-way fixed effects (TWFE) estimator, in... View Details
Shapiro, Jesse M., and Liyang Sun. "A Linear Panel Model with Heterogeneous Coefficients and Variation in Exposure." NBER Working Paper Series, No. 29976, April 2022.
- April 2022
- Article
Predictable Financial Crises
Using historical data on post-war financial crises around the world, we show that crises are substantially predictable. The combination of rapid credit and asset price growth over the prior three years, whether in the nonfinancial business or the household sector, is... View Details
Greenwood, Robin, Samuel G. Hanson, Andrei Shleifer, and Jakob Ahm Sørensen. "Predictable Financial Crises." Journal of Finance 77, no. 2 (April 2022): 863–921.
- March 2022
- Teaching Note
Inclusive Innovation at Mass General Brigham
By: Katherine Coffman and Olivia Hull
Teaching Note for HBS Case No. 921-006, “Inclusive Innovation at Mass General Brigham." This case invites students to explore the individual and structural factors that lead to an under-representation of women in male-dominated domains, and to think critically about... View Details
- March 2022 (Revised January 2025)
- Technical Note
Linear Regression
By: Iavor I. Bojinov, Michael Parzen and Paul Hamilton
This note provides an overview of linear regression for an introductory data science course. It begins with a discussion of correlation, and explains why correlation does not necessarily imply causation. The note then describes the method of least squares, and how to... View Details
Keywords: Data Science; Linear Regression; Mathematical Modeling; Mathematical Methods; Analytics and Data Science
Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Linear Regression." Harvard Business School Technical Note 622-100, March 2022. (Revised January 2025.)
- March 2022 (Revised January 2025)
- Technical Note
Statistical Inference
By: Iavor I. Bojinov, Michael Parzen and Paul Hamilton
This note provides an overview of statistical inference for an introductory data science course. First, the note discusses samples and populations. Next the note describes how to calculate confidence intervals for means and proportions. Then it walks through the logic... View Details
Keywords: Data Science; Statistics; Mathematical Modeling; Mathematical Methods; Analytics and Data Science
Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Statistical Inference." Harvard Business School Technical Note 622-099, March 2022. (Revised January 2025.)
- Article
Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)
By: Eva Ascarza and Ayelet Israeli
An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those “protected”... View Details
Keywords: Algorithm Bias; Personalization; Targeting; Generalized Random Forests (GRF); Discrimination; Customization and Personalization; Decision Making; Fairness; Mathematical Methods
Ascarza, Eva, and Ayelet Israeli. "Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)." e2115126119. Proceedings of the National Academy of Sciences 119, no. 11 (March 8, 2022).
- March 2022
- Article
Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models
By: Fiammetta Menchetti and Iavor Bojinov
Researchers regularly use synthetic control methods for estimating causal effects when a sub-set of units receive a single persistent treatment, and the rest are unaffected by the change. In many applications, however, units not assigned to treatment are nevertheless... View Details
Keywords: Causal Inference; Partial Interference; Synthetic Controls; Bayesian Structural Time Series; Mathematical Methods
Menchetti, Fiammetta, and Iavor Bojinov. "Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models." Annals of Applied Statistics 16, no. 1 (March 2022): 414–435.
- March 2022
- Article
Sensitivity Analysis of Agent-based Models: A New Protocol
By: Emanuele Borgonovo, Marco Pangallo, Jan Rivkin, Leonardo Rizzo and Nicolaj Siggelkow
Agent-based models (ABMs) are increasingly used in the management sciences. Though useful, ABMs are often critiqued: it is hard to discern why they produce the results they do and whether other assumptions would yield similar results. To help researchers address such... View Details
Keywords: Agent-based Modeling; Sensitivity Analysis; Design Of Experiments; Total Order Sensitivity Indices; Organizations; Behavior; Decision Making; Mathematical Methods
Borgonovo, Emanuele, Marco Pangallo, Jan Rivkin, Leonardo Rizzo, and Nicolaj Siggelkow. "Sensitivity Analysis of Agent-based Models: A New Protocol." Computational and Mathematical Organization Theory 28, no. 1 (March 2022): 52–94.
- March 2022
- Article
Targeting High Ability Entrepreneurs Using Community Information: Mechanism Design in the Field
Identifying high-growth microentrepreneurs in low-income countries remains a challenge due to a scarcity of verifiable information. With a cash grant experiment in India we demonstrate that community knowledge can help target high-growth microentrepreneurs; while the... View Details
Keywords: Microentrepreneurs; Community Information; Field Experiment; Loans; Entrepreneurship; Developing Countries and Economies; Financing and Loans; Information; Mathematical Methods; India
Hussam, Reshmaan, Natalia Rigol, and Benjamin N. Roth. "Targeting High Ability Entrepreneurs Using Community Information: Mechanism Design in the Field." American Economic Review 112, no. 3 (March 2022): 861–898.
(Online Appendix with Corrigendum—Thanks to Isabella Masetto, Diego Ubfal, and The Institute for Replication for identifying a minor coding error in the production of Table 4.)
(Online Appendix with Corrigendum—Thanks to Isabella Masetto, Diego Ubfal, and The Institute for Replication for identifying a minor coding error in the production of Table 4.)
- March 2022
- Article
Where to Locate COVID-19 Mass Vaccination Facilities?
By: Dimitris Bertsimas, Vassilis Digalakis Jr, Alexander Jacquillat, Michael Lingzhi Li and Alessandro Previero
The outbreak of COVID-19 led to a record-breaking race to develop a vaccine. However, the limited vaccine capacity creates another massive challenge: how to distribute vaccines to mitigate the near-end impact of the pandemic? In the United States in particular, the new... View Details
Keywords: Vaccines; COVID-19; Health Care and Treatment; Health Pandemics; Performance Effectiveness; Analytics and Data Science; Mathematical Methods
Bertsimas, Dimitris, Vassilis Digalakis Jr, Alexander Jacquillat, Michael Lingzhi Li, and Alessandro Previero. "Where to Locate COVID-19 Mass Vaccination Facilities?" Naval Research Logistics Quarterly 69, no. 2 (March 2022): 179–200.
- 2022
- Working Paper
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
By: Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu and Himabindu Lakkaraju
As various post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to develop a deeper understanding of if and when the explanations output by these methods disagree with each other, and how... View Details
Krishna, Satyapriya, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu, and Himabindu Lakkaraju. "The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective." Working Paper, 2022.
- 2022
- Chapter
Key Success Factors in Environmental Entrepreneurship: The Case of Wilderness Safaris
By: James E. Austin, Megan Epler Woods and Herman B. Leonard
This chapter analyzes the entrepreneurial conception and evolution of the Wilderness Safaris (WS) ecotourism enterprise operating in eight African countries. It illuminates a series of factors that contribute to positive environmental impact as well as financial... View Details
Austin, James E., Megan Epler Woods, and Herman B. Leonard. "Key Success Factors in Environmental Entrepreneurship: The Case of Wilderness Safaris." Chap. 7 in World Scientific Encyclopedia of Business Sustainability, Ethics, and Entrepreneurship, Volume 1: Environmental and Social Entrepreneurship, edited by Peter Gianiodis, Maritza I. Espina, and William R. Meek, 175–196. World Scientific Publishing, 2022.
- Article
Democratizing Work: Redistributing Power in Organizations for a Democratic and Sustainable Future
By: Julie Battilana, Julie Yen, Isabelle Ferreras and Lakshmi Ramarajan
Environmental destruction and social inequalities are increasingly urgent challenges. How can corporations, which have played a key role in creating and reproducing these problems, be part of the solution? In this paper, we advance that a shift to more democratic forms... View Details
Keywords: Corporate Citizenship; Corporate Social Responsibility; CSP; CSR; Domination; Industrial Relations; Power; Resistance; Work; Corporate Governance; Corporate Social Responsibility and Impact; Governance; Power and Influence; Environmental Management; Social Issues
Battilana, Julie, Julie Yen, Isabelle Ferreras, and Lakshmi Ramarajan. "Democratizing Work: Redistributing Power in Organizations for a Democratic and Sustainable Future." Organization Theory 3, no. 1 (January–March 2022).
- 2022
- Working Paper
Rethinking Explainability as a Dialogue: A Practitioner's Perspective
By: Himabindu Lakkaraju, Dylan Slack, Yuxin Chen, Chenhao Tan and Sameer Singh
As practitioners increasingly deploy machine learning models in critical domains such as healthcare, finance, and policy, it becomes vital to ensure that domain experts function effectively alongside these models. Explainability is one way to bridge the gap between... View Details
Keywords: Natural Language Conversations; AI and Machine Learning; Experience and Expertise; Interactive Communication; Business and Stakeholder Relations
Lakkaraju, Himabindu, Dylan Slack, Yuxin Chen, Chenhao Tan, and Sameer Singh. "Rethinking Explainability as a Dialogue: A Practitioner's Perspective." Working Paper, 2022.
- 2022
- Working Paper
TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations
By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet they have become more complex and harder to understand. To address this issue, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use explainability... View Details
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations." Working Paper, 2022.
- Article
A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects
By: Edward McFowland III, Sandeep Gangarapu, Ravi Bapna and Tianshu Sun
We define a prescriptive analytics framework that addresses the needs of a constrained decision-maker facing, ex ante, unknown costs and benefits of multiple policy levers. The framework is general in nature and can be deployed in any utility maximizing context, public... View Details
Keywords: Prescriptive Analytics; Heterogeneous Treatment Effects; Optimization; Observed Rank Utility Condition (OUR); Between-treatment Heterogeneity; Machine Learning; Decision Making; Analysis; Mathematical Methods
McFowland III, Edward, Sandeep Gangarapu, Ravi Bapna, and Tianshu Sun. "A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects." MIS Quarterly 45, no. 4 (December 2021): 1807–1832.