Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (424) Arrow Down
Filter Results: (424) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (684)
    • News  (145)
    • Research  (424)
    • Events  (20)
    • Multimedia  (12)
  • Faculty Publications  (303)

Show Results For

  • All HBS Web  (684)
    • News  (145)
    • Research  (424)
    • Events  (20)
    • Multimedia  (12)
  • Faculty Publications  (303)
← Page 6 of 424 Results →
Sort by

Are you looking for?

→Search All HBS Web
  • 24 Jul 2023
  • Research & Ideas

Part-Time Employees Want More Hours. Can Companies Tap This ‘Hidden’ Talent Pool?

many such workers are caregivers, excluded from full-time jobs because short-sighted employers don’t offer them the flexibility they need. Filtered out by hiring algorithms due to employment gaps or other hiring “red flags,” these willing... View Details
Keywords: by Kara Baskin
  • September 2018 (Revised December 2019)
  • Case

Zebra Medical Vision

By: Shane Greenstein and Sarah Gulick
An Israeli startup founded in 2014, Zebra Medical Vision developed algorithms that produced diagnoses from X-rays, mammograms, and CT-scans. The algorithms used deep learning and digitized radiology scans to create software that could assist doctors in making... View Details
Keywords: Radiology; Machine Learning; X-ray; CT Scan; Medical Technology; Probability; FDA 510(k); Diagnosis; Business Startups; Health Care and Treatment; Information Technology; Applications and Software; Competitive Strategy; Product Development; Commercialization; Decision Choices and Conditions; Health Industry; Medical Devices and Supplies Industry; Technology Industry; Israel
Citation
Educators
Purchase
Related
Greenstein, Shane, and Sarah Gulick. "Zebra Medical Vision." Harvard Business School Case 619-014, September 2018. (Revised December 2019.)
  • October 2021 (Revised March 2022)
  • Supplement

PittaRosso: Artificial Intelligence-Driven Pricing and Promotion

By: Ayelet Israeli and Fabrizio Fantini
PittaRosso, a traditional Italian shoe retailer, is implementing an AI system to provide pricing and promotion recommendations. The system allows them to implement changes that would affect both the top of funnel and bottom of funnel activities for the company: once... View Details
Keywords: Artificial Intelligence; Pricing; Pricing Algorithm; Pricing Decisions; Pricing Strategy; Pricing Structure; Promotion; Promotions; Online Marketing; Data-driven Decision-making; Data-driven Management; Retail; Retail Analytics; Price; Advertising Campaigns; Analytics and Data Science; Analysis; Digital Marketing; Budgets and Budgeting; Marketing Strategy; Marketing; Transformation; Decision Making; Retail Industry; Italy
Citation
Purchase
Related
Israeli, Ayelet, and Fabrizio Fantini. "PittaRosso: Artificial Intelligence-Driven Pricing and Promotion." Harvard Business School Spreadsheet Supplement 522-710, October 2021. (Revised March 2022.)
  • 25 May 2021
  • Research & Ideas

White Airbnb Hosts Earn More. Can AI Shrink the Racial Gap?

White people who host rental properties on Airbnb earn significantly more per year than Black hosts, but a “race blind” pricing algorithm could help close that income gap, new research shows. Black hosts who rely on Airbnb’s View Details
Keywords: by Lane Lambert; Technology; Accommodations
  • August 2022
  • Supplement

Zalora: Data-Driven Pricing Recommendations

By: Ayelet Israeli
This exercise can be used in conjunction with the main case "Zalora: Data-Driven Pricing" to facilitate class discussion without requiring data analysis from the students. Instead, the exercise presents reports that were created by the data science team to answer the... View Details
Keywords: Pricing; Pricing Algorithms; Dynamic Pricing; Ecommerce; Pricing Strategy; Pricing And Revenue Management; Apparel; Singapore; Startup; Demand Estimation; Data Analysis; Data Analytics; Exercise; Price; Internet and the Web; Apparel and Accessories Industry; Retail Industry; Fashion Industry; Singapore
Citation
Purchase
Related
Israeli, Ayelet. "Zalora: Data-Driven Pricing Recommendations." Harvard Business School Supplement 523-032, August 2022.
  • November 2021 (Revised December 2021)
  • Supplement

PittaRosso (B): Human and Machine Learning

By: Ayelet Israeli
This case supplements the "PittaRosso: Artificial Intelligence-Driven Pricing and Promotion" case, and provides major highlights on what happened at the company since the first case. View Details
Keywords: Artificial Intelligence; Pricing; Pricing Algorithm; Pricing Decisions; Pricing Strategy; Pricing Structure; Promotion; Promotions; Online Marketing; Data-driven Decision-making; Data-driven Management; Retail; Retail Analytics; Price; Advertising Campaigns; Analytics and Data Science; Analysis; Digital Marketing; Budgets and Budgeting; Marketing Strategy; Marketing; Transformation; Decision Making; AI and Machine Learning; Retail Industry; Italy
Citation
Purchase
Related
Israeli, Ayelet. "PittaRosso (B): Human and Machine Learning." Harvard Business School Supplement 522-047, November 2021. (Revised December 2021.)
  • 15 Nov 2022
  • Op-Ed

Why TikTok Is Beating YouTube for Eyeball Time (It’s Not Just the Dance Videos)

five times faster than the United Breaks Guitars video. The reason, it seemed, was that it spread not from person to person, but by algorithm. It spread because the algorithm noticed that if the song was served to people on TikTok, many... View Details
Keywords: by John Deighton and Leora Kornfeld
  • September 2022 (Revised November 2022)
  • Teaching Note

PittaRosso: Artificial Intelligence-Driven Pricing and Promotion

By: Ayelet Israeli
Teaching Note for HBS Case No. 522-046. View Details
Keywords: Artificial Intelligence; Pricing; Pricing Algorithm; Pricing Decisions; Pricing Strategy; Pricing Structure; Promotion; Promotions; Online Marketing; Data-driven Decision-making; Data-driven Management; Retail; Retail Analytics; Price; Advertising Campaigns; Analytics and Data Science; Analysis; Digital Marketing; Budgets and Budgeting; Marketing Strategy; Transformation; Decision Making; AI and Machine Learning; Retail Industry; Italy
Citation
Purchase
Related
Israeli, Ayelet. "PittaRosso: Artificial Intelligence-Driven Pricing and Promotion." Harvard Business School Teaching Note 523-020, September 2022. (Revised November 2022.)
  • January 2024 (Revised February 2024)
  • Case

Data-Driven Denim: Financial Forecasting at Levi Strauss

By: Mark Egan
The case examines Levi Strauss’ journey in implementing machine learning and AI into its financial forecasting process. The apparel company partnered with the IT company Wipro in 2017 to develop a machine learning algorithm that could help Levi Strauss forecast its... View Details
Keywords: Investor Relations; Forecasting; Machine Learning; Artificial Intelligence; Apparel; Corporate Finance; Forecasting and Prediction; AI and Machine Learning; Digital Transformation; Apparel and Accessories Industry; United States
Citation
Educators
Purchase
Related
Egan, Mark. "Data-Driven Denim: Financial Forecasting at Levi Strauss." Harvard Business School Case 224-029, January 2024. (Revised February 2024.)
  • Research Summary

Understanding the Limitations of Model Explanations

By: Himabindu Lakkaraju
The goal of this research is to understand how adversaries can exploit various algorithms used for explaining complex machine learning models with an intention to mislead end users. For instance, can adversaries trick these algorithms into masking their racial and... View Details
  • 2022
  • Working Paper

Machine Learning Models for Prediction of Scope 3 Carbon Emissions

By: George Serafeim and Gladys Vélez Caicedo
For most organizations, the vast amount of carbon emissions occur in their supply chain and in the post-sale processing, usage, and end of life treatment of a product, collectively labelled scope 3 emissions. In this paper, we train machine learning algorithms on 15... View Details
Keywords: Carbon Emissions; Climate Change; Environment; Carbon Accounting; Machine Learning; Artificial Intelligence; Digital; Data Science; Environmental Sustainability; Environmental Management; Environmental Accounting
Citation
SSRN
Read Now
Related
Serafeim, George, and Gladys Vélez Caicedo. "Machine Learning Models for Prediction of Scope 3 Carbon Emissions." Harvard Business School Working Paper, No. 22-080, June 2022.
  • November–December 2024
  • Article

Outcome-Driven Dynamic Refugee Assignment with Allocation Balancing

By: Kirk Bansak and Elisabeth Paulson
This study proposes two new dynamic assignment algorithms to match refugees and asylum seekers to geographic localities within a host country. The first, currently implemented in a multi-year pilot in Switzerland, seeks to maximize the average predicted employment... View Details
Keywords: AI and Machine Learning; Refugees; Geographic Location; Employment
Citation
Find at Harvard
Purchase
Related
Bansak, Kirk, and Elisabeth Paulson. "Outcome-Driven Dynamic Refugee Assignment with Allocation Balancing." Operations Research 72, no. 6 (November–December 2024): 2375–2390.
  • November 2024 (Revised January 2025)
  • Case

MiDAS: Automating Unemployment Benefits

By: Shikhar Ghosh and Shweta Bagai
In 2015, the state of Michigan considered whether to nominate its Michigan Integrated Data Automated System (MiDAS) for a prestigious state technology award. Launched in 2013 amid severe budget pressures, the $47 million automated fraud detection system was designed to... View Details
Keywords: Artificial Intelligence; AI; Machine Learning Models; Algorithmic Data; Automation; Benefits; Compensation; Cost Reduction; Government; Fraud; Government Technology; Public Sector; Systems; Systems Integration; Unemployment Insurance; Waste Heat Recovery; AI and Machine Learning; Government Administration; Insurance; Decision Making; Digital Transformation; Employment; Public Administration Industry; United States; Michigan
Citation
Educators
Purchase
Related
Ghosh, Shikhar, and Shweta Bagai. "MiDAS: Automating Unemployment Benefits." Harvard Business School Case 825-100, November 2024. (Revised January 2025.)
  • Teaching Interest

Big Data Analytics and Machine Learning

Big data in the context of marketing, management, and innovation strategy. Machine Learning algorithms and tools. 
 View Details
Keywords: Big Data; Machine Learning; Analytics
  • Article

Testing Substitutability

By: John William Hatfield, Nicole Immorlica and Scott Duke Kominers
We provide an algorithm for testing the substitutability of a length-N preference relation over a set of contracts X in time O(|X|3⋅N3). Access to the preference relation is essential for this result: We show that a substitutability-testing algorithm with access only... View Details
Keywords: Substitutability; Matching; Communication Complexity; Preference Elicitation; Marketplace Matching; Communication; Mathematical Methods; Economics
Citation
Find at Harvard
Purchase
Related
Hatfield, John William, Nicole Immorlica, and Scott Duke Kominers. "Testing Substitutability." Games and Economic Behavior 75, no. 2 (July 2012): 639–645.
  • May 2020
  • Article

Scalable Holistic Linear Regression

By: Dimitris Bertsimas and Michael Lingzhi Li
We propose a new scalable algorithm for holistic linear regression building on Bertsimas & King (2016). Specifically, we develop new theory to model significance and multicollinearity as lazy constraints rather than checking the conditions iteratively. The resulting... View Details
Keywords: Mathematical Methods; Analytics and Data Science
Citation
Read Now
Related
Bertsimas, Dimitris, and Michael Lingzhi Li. "Scalable Holistic Linear Regression." Operations Research Letters 48, no. 3 (May 2020): 203–208.
  • September 2020 (Revised July 2022)
  • Supplement

Spreadsheet Supplement to Artea (B) and (C)

By: Eva Ascarza and Ayelet Israeli
Spreadsheet Supplement to "Artea (B): Including Customer-level Demographic Data" and "Artea (C): Potential Discrimination through Algorithmic Targeting" View Details
Keywords: Gender; Race; Diversity; Marketing; Customer Relationship Management; Demographics; Prejudice and Bias; Retail Industry; Apparel and Accessories Industry; Technology Industry; United States
Citation
Purchase
Related
Ascarza, Eva, and Ayelet Israeli. "Spreadsheet Supplement to Artea (B) and (C)." Harvard Business School Spreadsheet Supplement 521-704, September 2020. (Revised July 2022.)
  • March 2022
  • Article

Learning to Rank an Assortment of Products

By: Kris Ferreira, Sunanda Parthasarathy and Shreyas Sekar
We consider the product ranking challenge that online retailers face when their customers typically behave as “window shoppers”: they form an impression of the assortment after browsing products ranked in the initial positions and then decide whether to continue... View Details
Keywords: Online Learning; Product Ranking; Assortment Optimization; Learning; Internet and the Web; Product Marketing; Consumer Behavior; E-commerce
Citation
Find at Harvard
Read Now
Purchase
Related
Ferreira, Kris, Sunanda Parthasarathy, and Shreyas Sekar. "Learning to Rank an Assortment of Products." Management Science 68, no. 3 (March 2022): 1828–1848.
  • 2019
  • Article

An Empirical Study of Rich Subgroup Fairness for Machine Learning

By: Michael J Kearns, Seth Neel, Aaron Leon Roth and Zhiwei Steven Wu
Kearns et al. [2018] recently proposed a notion of rich subgroup fairness intended to bridge the gap between statistical and individual notions of fairness. Rich subgroup fairness picks a statistical fairness constraint (say, equalizing false positive rates across... View Details
Keywords: Machine Learning; Fairness; AI and Machine Learning
Citation
Read Now
Related
Kearns, Michael J., Seth Neel, Aaron Leon Roth, and Zhiwei Steven Wu. "An Empirical Study of Rich Subgroup Fairness for Machine Learning." Proceedings of the Conference on Fairness, Accountability, and Transparency (2019): 100–109.
  • Research Summary

Overview

By: Kris Johnson Ferreira
Professor Ferreira's research primarily focuses on how retailers can use algorithms to make better revenue management decisions, including pricing, product display, and assortment planning. In the retail industry, anticipating consumer demand is arguably one of the... View Details
Keywords: E-commerce; Analytics; Revenue Management; Pricing; Assortment Planning; Field Experiments; Operations; Supply Chain; Supply Chain Management; Retail Industry
  • ←
  • 6
  • 7
  • …
  • 21
  • 22
  • →

Are you looking for?

→Search All HBS Web
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.