Filter Results:
(1,220)
Show Results For
- All HBS Web
(1,220)
- People (1)
- News (247)
- Research (702)
- Events (17)
- Multimedia (9)
- Faculty Publications (587)
Show Results For
- All HBS Web
(1,220)
- People (1)
- News (247)
- Research (702)
- Events (17)
- Multimedia (9)
- Faculty Publications (587)
- June 2025
- Case
Scale AI Scales Up
By: Boris Groysberg and Sarah L. Abbott
Scale AI, the data labeling and AI infrastructure company, had grown rapidly since it was founded in 2016; however, as Scale’s generative AI business was taking off, Alexandr Wang, Scale’s founder and CEO, became concerned that Scale was slowing down. Wang and the... View Details
Keywords: Artificial Intelligence; Technology And Innovation Management; Start-ups; Entrepreneur; Managing Growth; Hiring; Generative Ai; Data Labeling; Scale; AI and Machine Learning; Entrepreneurship; Talent and Talent Management; Growth Management; Leadership; Culture; Technology Industry; United States
- August 2023
- Article
Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel
By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet models have become more complex and harder to understand. To understand complex models, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use... View Details
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel." Nature Machine Intelligence 5, no. 8 (August 2023): 873–883.
- 21 Aug 2019
- Research & Ideas
What Machine Learning Teaches Us about CEO Leadership Style
CEOs are communicators. Studies show that CEOs spend 85 percent of their time in communication-related activities, including speeches, meetings, and phone calls with people both inside and outside the firm.... View Details
Keywords: by Michael Blanding
- May 2022
- Case
AWS and Amazon SageMaker (A): The Commercialization of Machine Learning Services
By: Karim R. Lakhani, Shane Greenstein and Kerry Herman
Lakhani, Karim R., Shane Greenstein, and Kerry Herman. "AWS and Amazon SageMaker (A): The Commercialization of Machine Learning Services." Harvard Business School Case 622-060, May 2022.
The Experimentation Machine
Leverage AI to be a 10x Founder
Today’s most successful founders know that the startups that learn the fastest will win. In The Experimentation Machine, HBS professor, entrepreneur, and venture capitalist Jeffrey J. Bussgang reveals... View Details
- 17 Jan 2020
- News
AB InBev Taps Machine Learning to Root Out Corruption
- May 2024
- Teaching Note
AI21 Labs in 2023: Strategy for Generative AI
By: David Yoffie
Teaching Note for HBS Case 724-383. The case has 3 important teaching purposes: First, what are the advantages and disadvantages of imitation? (e.g., Should AI21 imitate OpenAI with a chatbot?) Second, what are the advantages and disadvantages of keeping new technology... View Details
- 2024
- Working Paper
The Crowdless Future? Generative AI and Creative Problem Solving
The rapid advances in generative artificial intelligence (AI) open up attractive opportunities for creative problem-solving through human-guided AI partnerships. To explore this potential, we initiated a crowdsourcing challenge focused on sustainable, circular economy... View Details
Keywords: Large Language Models; Crowdsourcing; Generative Ai; Creative Problem-solving; Organizational Search; AI-in-the-loop; Prompt Engineering; AI and Machine Learning; Innovation and Invention
Boussioux, Léonard, Jacqueline N. Lane, Miaomiao Zhang, Vladimir Jacimovic, and Karim R. Lakhani. "The Crowdless Future? Generative AI and Creative Problem Solving." Harvard Business School Working Paper, No. 24-005, July 2023. (Revised July 2024.)
- January 2024 (Revised February 2024)
- Case
Data-Driven Denim: Financial Forecasting at Levi Strauss
By: Mark Egan
The case examines Levi Strauss’ journey in implementing machine learning and AI into its financial forecasting process. The apparel company partnered with the IT company Wipro in 2017 to develop a machine learning algorithm that could help Levi Strauss forecast its... View Details
Keywords: Investor Relations; Forecasting; Machine Learning; Artificial Intelligence; Apparel; Corporate Finance; Forecasting and Prediction; AI and Machine Learning; Digital Transformation; Apparel and Accessories Industry; United States
Egan, Mark. "Data-Driven Denim: Financial Forecasting at Levi Strauss." Harvard Business School Case 224-029, January 2024. (Revised February 2024.)
- Article
Towards the Unification and Robustness of Perturbation and Gradient Based Explanations
By: Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu and Himabindu Lakkaraju
As machine learning black boxes are increasingly being deployed in critical domains such as healthcare and criminal justice, there has been a growing emphasis on developing techniques for explaining these black boxes in a post hoc manner. In this work, we analyze two... View Details
Keywords: Machine Learning; Black Box Explanations; Decision Making; Forecasting and Prediction; Information Technology
Agarwal, Sushant, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu, and Himabindu Lakkaraju. "Towards the Unification and Robustness of Perturbation and Gradient Based Explanations." Proceedings of the International Conference on Machine Learning (ICML) 38th (2021).
- April 2021 (Revised August 2021)
- Case
Borusan CAT: Monetizing Prediction in the Age of AI (A)
By: Navid Mojir and Gamze Yucaoglu
Borusan Cat is an international distributor of Caterpillar heavy machines. Esra Durgun (Director of Strategy, Digitization, and Innovation) and Ozgur Gunaydin (CEO) seem to have bet their careers on developing Muneccim, a new predictive technology that is designed to... View Details
Keywords: Monetization Strategy; Artificial Intelligence; AI; Forecasting and Prediction; Applications and Software; Technological Innovation; Marketing; Segmentation; AI and Machine Learning; Construction Industry; Turkey
Mojir, Navid, and Gamze Yucaoglu. "Borusan CAT: Monetizing Prediction in the Age of AI (A)." Harvard Business School Case 521-053, April 2021. (Revised August 2021.)
- 2019
- Working Paper
Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles
By: Prithwiraj Choudhury, Dan Wang, Natalie A. Carlson and Tarun Khanna
We demonstrate how a novel synthesis of three methods—(1) unsupervised topic modeling of text data to generate new measures of textual variance, (2) sentiment analysis of text data, and (3) supervised ML coding of facial images with a cutting-edge convolutional neural... View Details
Choudhury, Prithwiraj, Dan Wang, Natalie A. Carlson, and Tarun Khanna. "Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles." Harvard Business School Working Paper, No. 18-064, January 2018. (Revised May 2019.)
- Web
Machine Learning frameworks (Tensorflow, PyTorch, Keras, OpenCV) - Research Computing Services
Software Tools Machine Learning frameworks (Tensorflow, PyTorch, Keras, OpenCV) 5ms The HBSGrid offers artificial intelligence(AI) and machine... View Details
- April 2018 (Revised February 2019)
- Supplement
Improving Worker Safety in the Era of Machine Learning (B)
By: Michael W. Toffel, Dan Levy, Astrid Camille Pineda, Jose Ramon Morales Arilla and Matthew S. Johnson
Supplements the (A) case. View Details
Toffel, Michael W., Dan Levy, Astrid Camille Pineda, Jose Ramon Morales Arilla, and Matthew S. Johnson. "Improving Worker Safety in the Era of Machine Learning (B)." Harvard Business School Supplement 618-064, April 2018. (Revised February 2019.)
- Research Summary
Overview
My research focuses on content marketing, generative AI, digital marketing, and computational social science. View Details
- Teaching Interest
Data Science and AI for Leaders
By: Dennis Campbell
Modern business increasingly relies... View Details
- Article
Robust and Stable Black Box Explanations
By: Himabindu Lakkaraju, Nino Arsov and Osbert Bastani
As machine learning black boxes are increasingly being deployed in real-world applications, there
has been a growing interest in developing post hoc explanations that summarize the behaviors
of these black boxes. However, existing algorithms for generating such... View Details
Lakkaraju, Himabindu, Nino Arsov, and Osbert Bastani. "Robust and Stable Black Box Explanations." Proceedings of the International Conference on Machine Learning (ICML) 37th (2020): 5628–5638. (Published in PMLR, Vol. 119.)
- 2025
- Article
Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments
By: Kosuke Imai and Michael Lingzhi Li
Researchers are increasingly turning to machine learning (ML) algorithms to investigate causal heterogeneity in randomized experiments. Despite their promise, ML algorithms may fail to accurately ascertain heterogeneous treatment effects under practical settings with... View Details
Imai, Kosuke, and Michael Lingzhi Li. "Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments." Journal of Business & Economic Statistics 43, no. 1 (2025): 256–268.
- October 2024 (Revised February 2025)
- Case
AI and Brand Management: Promises and Perils
By: Julian De Freitas and Elie Ofek
As AI gains traction across industries, companies anticipate that AI will revolutionize both backend processes and customer-facing interactions—with brands eager to leverage AI for tailored marketing materials and automated consumer engagements. Yet, despite a dramatic... View Details
Keywords: AI and Machine Learning; Brands and Branding; Reputation; Technology Adoption; Competitive Advantage
De Freitas, Julian, and Elie Ofek. "AI and Brand Management: Promises and Perils." Harvard Business School Case 525-021, October 2024. (Revised February 2025.)