Filter Results:
(646)
Show Results For
- All HBS Web
(646)
- News (144)
- Research (416)
- Events (13)
- Multimedia (11)
- Faculty Publications (291)
Show Results For
- All HBS Web
(646)
- News (144)
- Research (416)
- Events (13)
- Multimedia (11)
- Faculty Publications (291)
- April 2024
- Article
A Machine Learning Algorithm Predicting Risk of Dilating VUR among Infants with Hydronephrosis Using UTD Classification
By: Hsin-Hsiao Scott Wang, Michael Lingzhi Li, Dylan Cahill, John Panagides, Tanya Logvinenko, Jeanne Chow and Caleb Nelson
Backgrounds: Urinary Tract Dilation (UTD) classification has been designed to be a more objective grading system to evaluate antenatal and post-natal UTD. Due to unclear association between UTD classifications to specific anomalies such as vesico-ureteral reflux (VUR),... View Details
Wang, Hsin-Hsiao Scott, Michael Lingzhi Li, Dylan Cahill, John Panagides, Tanya Logvinenko, Jeanne Chow, and Caleb Nelson. "A Machine Learning Algorithm Predicting Risk of Dilating VUR among Infants with Hydronephrosis Using UTD Classification." Journal of Pediatric Urology 20, no. 2 (April 2024): 271–278.
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for iBuyer 1
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Keywords: Algorithm; Decision Choices and Conditions; Decision Making; Measurement and Metrics; Market Timing
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for iBuyer 1." Harvard Business School Exercise 923-019, October 2022.
- January–February 2022
- Article
Algorithm-Augmented Work and Domain Experience: The Countervailing Forces of Ability and Aversion
By: Ryan Allen and Prithwiraj Choudhury
How does a knowledge worker’s level of domain experience affect their algorithm-augmented work performance? We propose and test theoretical predictions that domain experience has countervailing effects on algorithm-augmented performance: on one hand, domain experience... View Details
Keywords: Automation; Domain Experience; Algorithmic Aversion; Experts; Algorithms; Machine Learning; Future Of Work; Employees; Experience and Expertise; Decision Making; Performance
Allen, Ryan, and Prithwiraj Choudhury. "Algorithm-Augmented Work and Domain Experience: The Countervailing Forces of Ability and Aversion." Organization Science 33, no. 1 (January–February 2022): 149–169. ("Best PhD Student Paper" at SMS conference 2020.)
- 14 Jun 2019
- News
Are You Clueless About Clothes? Stitch Fix Has an Algorithm for That
- 18 Nov 2016
- Conference Presentation
Rawlsian Fairness for Machine Learning
By: Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel and Aaron Leon Roth
Motivated by concerns that automated decision-making procedures can unintentionally lead to discriminatory behavior, we study a technical definition of fairness modeled after John Rawls' notion of "fair equality of opportunity". In the context of a simple model of... View Details
Joseph, Matthew, Michael J. Kearns, Jamie Morgenstern, Seth Neel, and Aaron Leon Roth. "Rawlsian Fairness for Machine Learning." Paper presented at the 3rd Workshop on Fairness, Accountability, and Transparency in Machine Learning, Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), November 18, 2016.
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for iBuyer 3
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Keywords: Algorithm; Decision Choices and Conditions; Decision Making; Measurement and Metrics; Market Timing
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for iBuyer 3." Harvard Business School Exercise 923-021, October 2022.
- October 2022
- Exercise
Shanty Real Estate: Updated Confidential Information for Homebuyer
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Keywords: Algorithm; Decision Choices and Conditions; Decision Making; Market Timing; Measurement and Metrics
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Updated Confidential Information for Homebuyer." Harvard Business School Exercise 923-022, October 2022.
- October 2022
- Exercise
Shanty Real Estate: Updated Confidential Information for iBuyer
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Keywords: Algorithm; Decision Choices and Conditions; Measurement and Metrics; Market Timing; Decision Making
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Updated Confidential Information for iBuyer." Harvard Business School Exercise 923-023, October 2022.
- June 2016
- Article
Detecting Figures and Part Labels in Patents: Competition-based Development of Graphics Recognition Algorithms
By: Christoph Riedl, Richard Zanibbi, Marti A. Hearst, Siyu Zhu, Michael Menietti, Jason Crusan, Ivan Metelsky and Karim R. Lakhani
Riedl, Christoph, Richard Zanibbi, Marti A. Hearst, Siyu Zhu, Michael Menietti, Jason Crusan, Ivan Metelsky, and Karim R. Lakhani. "Detecting Figures and Part Labels in Patents: Competition-based Development of Graphics Recognition Algorithms." International Journal on Document Analysis and Recognition (IJDAR) 19, no. 2 (June 2016): 155–172.
- November 2022 (Revised February 2024)
- Exercise
Managing Customer Retention at Teleko
By: Eva Ascarza
This exercise aims to teach students about 1) Targeting Policies; and 2) Algorithmic decision making, and 3) Retention management. View Details
Ascarza, Eva. "Managing Customer Retention at Teleko." Harvard Business School Exercise 523-005, November 2022. (Revised February 2024.)
- May–June 2023
- Article
Analytics for Marketers: When to Rely on Algorithms and When to Trust Your Gut
By: Fabrizio Fantini and Das Narayandas
Advanced analytics can help companies solve a host of management problems, including those related to marketing, sales, and supply-chain operations, which can lead to a sustainable competitive advantage. But as more data becomes available and advanced analytics are... View Details
Fantini, Fabrizio, and Das Narayandas. "Analytics for Marketers: When to Rely on Algorithms and When to Trust Your Gut." Harvard Business Review 101, no. 3 (May–June 2023): 82–91.
- July 7, 2022
- Other Article
Are Online Prices Higher Because of Pricing Algorithms?
By: Zach Y. Brown and Alexander J. MacKay
This article reviews recent work examining pricing strategies of major online retailers and the potential effects of pricing algorithms. We describe how pricing algorithms can lead to higher prices in a number of ways, even if some characteristics of these algorithms... View Details
Keywords: Pricing Algorithms; Online Marketplace; Digital Strategy; Internet and the Web; Retail Industry
Brown, Zach Y., and Alexander J. MacKay. "Are Online Prices Higher Because of Pricing Algorithms?" Brookings Series: The Economics and Regulation of Artificial Intelligence and Emerging Technologies (July 7, 2022).
- 2020
- Book
Competing in the Age of AI: Strategy and Leadership When Algorithms and Networks Run the World
By: Marco Iansiti and Karim R. Lakhani
In industry after industry, data, analytics, and AI-driven processes are transforming the nature of work. While we often still treat AI as the domain of a specific skill, business function, or sector, we have entered a new era in which AI is challenging the very... View Details
Keywords: Artificial Intelligence; Technological Innovation; Change; Competition; Strategy; Leadership; Business Processes; Organizational Change and Adaptation; AI and Machine Learning
Iansiti, Marco, and Karim R. Lakhani. Competing in the Age of AI: Strategy and Leadership When Algorithms and Networks Run the World. Boston: Harvard Business Review Press, 2020.
- September 2020 (Revised July 2022)
- Exercise
Artea (B): Including Customer-Level Demographic Data
By: Eva Ascarza and Ayelet Israeli
This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and targeting. Parts (B),(C),(D) Introduce algorithmic bias. The... View Details
Keywords: Targeting; Algorithmic Bias; Race; Gender; Marketing; Diversity; Customer Relationship Management; Demographics; Prejudice and Bias; Retail Industry; Apparel and Accessories Industry; Technology Industry; United States
Ascarza, Eva, and Ayelet Israeli. "Artea (B): Including Customer-Level Demographic Data." Harvard Business School Exercise 521-022, September 2020. (Revised July 2022.)
- September 17, 2021
- Article
AI Can Help Address Inequity—If Companies Earn Users' Trust
By: Shunyuan Zhang, Kannan Srinivasan, Param Singh and Nitin Mehta
While companies may spend a lot of time testing models before launch, many spend too little time considering how they will work in the wild. In particular, they fail to fully consider how rates of adoption can warp developers’ intent. For instance, Airbnb launched a... View Details
Keywords: Artificial Intelligence; Algorithmic Bias; Technological Innovation; Perception; Diversity; Equality and Inequality; Trust; AI and Machine Learning
Zhang, Shunyuan, Kannan Srinivasan, Param Singh, and Nitin Mehta. "AI Can Help Address Inequity—If Companies Earn Users' Trust." Harvard Business Review Digital Articles (September 17, 2021).
- Article
The Pitfalls of Pricing Algorithms: Be Mindful of How They Can Hurt Your Brand
By: Marco Bertini and Oded Koenigsberg
More and more companies are relying on pricing algorithms to maximize profits. The use of artificial intelligence and machine learning enables real-time price adjustments based on supply and demand, competitors’ activities, delivery schedules, and so forth. But... View Details
Keywords: Algorithmic Pricing; Dynamic Pricing; Price; Change; Information Technology; Brands and Branding; Perception; Consumer Behavior
Bertini, Marco, and Oded Koenigsberg. "The Pitfalls of Pricing Algorithms: Be Mindful of How They Can Hurt Your Brand." Harvard Business Review 99, no. 5 (September–October 2021): 74–83.
- Mar 2021
- Conference Presentation
Descent-to-Delete: Gradient-Based Methods for Machine Unlearning
By: Seth Neel, Aaron Leon Roth and Saeed Sharifi-Malvajerdi
We study the data deletion problem for convex models. By leveraging techniques from convex optimization and reservoir sampling, we give the first data deletion algorithms that are able to handle an arbitrarily long sequence of adversarial updates while promising both... View Details
Neel, Seth, Aaron Leon Roth, and Saeed Sharifi-Malvajerdi. "Descent-to-Delete: Gradient-Based Methods for Machine Unlearning." Paper presented at the 32nd Algorithmic Learning Theory Conference, March 2021.
- Article
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness
By: Michael J Kearns, Seth Neel, Aaron Leon Roth and Zhiwei Steven Wu
The most prevalent notions of fairness in machine learning are statistical definitions: they fix a small collection of pre-defined groups, and then ask for parity of some statistic of the classifier (like classification rate or false positive rate) across these groups.... View Details
Kearns, Michael J., Seth Neel, Aaron Leon Roth, and Zhiwei Steven Wu. "Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness." Proceedings of the International Conference on Machine Learning (ICML) 35th (2018).