Filter Results:
(365)
Show Results For
- All HBS Web
(365)
- News (71)
- Research (259)
- Events (9)
- Multimedia (1)
- Faculty Publications (150)
Show Results For
- All HBS Web
(365)
- News (71)
- Research (259)
- Events (9)
- Multimedia (1)
- Faculty Publications (150)
- 2022
- Working Paper
Machine Learning Models for Prediction of Scope 3 Carbon Emissions
By: George Serafeim and Gladys Vélez Caicedo
For most organizations, the vast amount of carbon emissions occur in their supply chain and in the post-sale processing, usage, and end of life treatment of a product, collectively labelled scope 3 emissions. In this paper, we train machine learning algorithms on 15... View Details
Keywords: Carbon Emissions; Climate Change; Environment; Carbon Accounting; Machine Learning; Artificial Intelligence; Digital; Data Science; Environmental Sustainability; Environmental Management; Environmental Accounting
Serafeim, George, and Gladys Vélez Caicedo. "Machine Learning Models for Prediction of Scope 3 Carbon Emissions." Harvard Business School Working Paper, No. 22-080, June 2022.
- October 2023
- Article
Matching Mechanisms for Refugee Resettlement
By: David Delacrétaz, Scott Duke Kominers and Alexander Teytelboym
Current refugee resettlement processes account for neither the preferences of refugees nor the priorities of hosting communities. We introduce a new framework for matching with multidimensional knapsack constraints that captures the (possibly multidimensional) sizes of... View Details
Keywords: Refugee Resettlement; Matching; Matching Markets; Matching Platform; Matching With Contracts; Algorithms; Refugees; Market Design
Delacrétaz, David, Scott Duke Kominers, and Alexander Teytelboym. "Matching Mechanisms for Refugee Resettlement." American Economic Review 113, no. 10 (October 2023): 2689–2717.
- November 2024 (Revised January 2025)
- Case
MiDAS: Automating Unemployment Benefits
By: Shikhar Ghosh and Shweta Bagai
In 2015, the state of Michigan considered whether to nominate its Michigan Integrated Data Automated System (MiDAS) for a prestigious state technology award. Launched in 2013 amid severe budget pressures, the $47 million automated fraud detection system was designed to... View Details
Keywords: Artificial Intelligence; AI; Machine Learning Models; Algorithmic Data; Automation; Benefits; Compensation; Cost Reduction; Government; Fraud; Government Technology; Public Sector; Systems; Systems Integration; Unemployment Insurance; Waste Heat Recovery; AI and Machine Learning; Government Administration; Insurance; Decision Making; Digital Transformation; Employment; Public Administration Industry; United States; Michigan
Ghosh, Shikhar, and Shweta Bagai. "MiDAS: Automating Unemployment Benefits." Harvard Business School Case 825-100, November 2024. (Revised January 2025.)
- January 2021
- Article
Machine Learning for Pattern Discovery in Management Research
By: Prithwiraj Choudhury, Ryan Allen and Michael G. Endres
Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used for exploratory inductive or abductive research, or for post-hoc analysis of regression results to detect... View Details
Keywords: Machine Learning; Supervised Machine Learning; Induction; Abduction; Exploratory Data Analysis; Pattern Discovery; Decision Trees; Random Forests; Neural Networks; ROC Curve; Confusion Matrix; Partial Dependence Plots; AI and Machine Learning
Choudhury, Prithwiraj, Ryan Allen, and Michael G. Endres. "Machine Learning for Pattern Discovery in Management Research." Strategic Management Journal 42, no. 1 (January 2021): 30–57.
- 2023
- Working Paper
Efficient Discovery of Heterogeneous Quantile Treatment Effects in Randomized Experiments via Anomalous Pattern Detection
By: Edward McFowland III, Sriram Somanchi and Daniel B. Neill
In the recent literature on estimating heterogeneous treatment effects, each proposed method makes its own set of restrictive assumptions about the intervention’s effects and which subpopulations to explicitly estimate. Moreover, the majority of the literature provides... View Details
Keywords: Causal Inference; Program Evaluation; Algorithms; Distributional Average Treatment Effect; Treatment Effect Subset Scan; Heterogeneous Treatment Effects
McFowland III, Edward, Sriram Somanchi, and Daniel B. Neill. "Efficient Discovery of Heterogeneous Quantile Treatment Effects in Randomized Experiments via Anomalous Pattern Detection." Working Paper, 2023.
- October 2021 (Revised June 2022)
- Case
PittaRosso: Artificial Intelligence-Driven Pricing and Promotion
By: Ayelet Israeli
PittaRosso, a traditional Italian shoe retailer, is implementing an AI system to provide pricing and promotion recommendations. The system allows them to implement changes that would affect both the top of funnel and bottom of funnel activities for the company: once... View Details
Keywords: Artificial Intelligence; Pricing; Pricing Algorithm; Pricing Decisions; Pricing Strategy; Pricing Structure; Promotion; Promotions; Online Marketing; Data-driven Decision-making; Data-driven Management; Retail; Retail Analytics; AI; Price; Advertising Campaigns; Analytics and Data Science; Analysis; Digital Marketing; Budgets and Budgeting; Marketing Strategy; Marketing; Transformation; Decision Making; AI and Machine Learning; Retail Industry; Italy
Israeli, Ayelet. "PittaRosso: Artificial Intelligence-Driven Pricing and Promotion." Harvard Business School Case 522-046, October 2021. (Revised June 2022.)
- 05 May 2022
- HBS Seminar
Caleb Kwon, Harvard Business School
- October 2021 (Revised March 2022)
- Supplement
PittaRosso: Artificial Intelligence-Driven Pricing and Promotion
By: Ayelet Israeli and Fabrizio Fantini
PittaRosso, a traditional Italian shoe retailer, is implementing an AI system to provide pricing and promotion recommendations. The system allows them to implement changes that would affect both the top of funnel and bottom of funnel activities for the company: once... View Details
Keywords: Artificial Intelligence; Pricing; Pricing Algorithm; Pricing Decisions; Pricing Strategy; Pricing Structure; Promotion; Promotions; Online Marketing; Data-driven Decision-making; Data-driven Management; Retail; Retail Analytics; Price; Advertising Campaigns; Analytics and Data Science; Analysis; Digital Marketing; Budgets and Budgeting; Marketing Strategy; Marketing; Transformation; Decision Making; Retail Industry; Italy
Seth Neel
Seth Neel is an Assistant Professor housed in the Department of Technology and Operations Management (TOM) at HBS, and a Faculty Affiliate in Computer Science at SEAS. He is Principal Investigator of the Trustworthy AI Lab in Harvard's new View Details
- 2023
- Article
Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten
By: Himabindu Lakkaraju, Satyapriya Krishna and Jiaqi Ma
The Right to Explanation and the Right to be Forgotten are two important principles outlined to regulate algorithmic decision making and data usage in real-world applications. While the right to explanation allows individuals to request an actionable explanation for an... View Details
Keywords: Analytics and Data Science; AI and Machine Learning; Decision Making; Governing Rules, Regulations, and Reforms
Lakkaraju, Himabindu, Satyapriya Krishna, and Jiaqi Ma. "Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten." Proceedings of the International Conference on Machine Learning (ICML) 40th (2023): 17808–17826.
- Research Summary
Overview
Professor Ferreira's research primarily focuses on how retailers can use algorithms to make better revenue management decisions, including pricing, product display, and assortment planning. In the retail industry, anticipating consumer demand is arguably one of the... View Details
- 2022
- Working Paper
Human-Computer Interactions in Demand Forecasting and Labor Scheduling Decisions
By: Caleb Kwon, Ananth Raman and Jorge Tamayo
We empirically analyze how managerial overrides to a commercial algorithm that forecasts demand and schedules labor affect store performance. We analyze administrative data from a large grocery retailer that utilizes a commercial algorithm to forecast demand and... View Details
Keywords: Employees; Human Capital; Performance; Applications and Software; Management Skills; Management Practices and Processes; Retail Industry
Kwon, Caleb, Ananth Raman, and Jorge Tamayo. "Human-Computer Interactions in Demand Forecasting and Labor Scheduling Decisions." Working Paper, December 2022. (R&R Management Science.)
- 14 Jun 2017
- Working Paper Summaries
Minimizing Justified Envy in School Choice: The Design of New Orleans' OneApp
- 26 Apr 2023
- In Practice
Is AI Coming for Your Job?
gradually and then suddenly.” Companies will move slowly to deploy generative AI technology like that embodied in OpenAI’s ChatGPT. Harnessing the immense pool of data underlying it will require the development of proprietary... View Details
Descent-to-Delete: Gradient-Based Methods for Machine Unlearning
We study the data deletion problem for convex models. By leveraging techniques from convex optimization and reservoir sampling, we give the first data deletion algorithms that are able to handle an arbitrarily long sequence of adversarial updates while promising... View Details
Jeremy Yang
Jeremy Yang is an Assistant Professor of Business Administration in the Marketing Unit at Harvard Business School. He teaches Marketing in the MBA required curriculum. He develops data products for... View Details
- 24 Jul 2023
- Research & Ideas
Part-Time Employees Want More Hours. Can Companies Tap This ‘Hidden’ Talent Pool?
many such workers are caregivers, excluded from full-time jobs because short-sighted employers don’t offer them the flexibility they need. Filtered out by hiring algorithms due to employment gaps or other hiring “red flags,” these willing... View Details
Keywords: by Kara Baskin
- Working Paper
Group Fairness in Dynamic Refugee Assignment
By: Daniel Freund, Thodoris Lykouris, Elisabeth Paulson, Bradley Sturt and Wentao Weng
Ensuring that refugees and asylum seekers thrive (e.g., find employment) in their host countries is a profound humanitarian goal, and a primary driver of employment is the geographic
location within a host country to which the refugee or asylum seeker is... View Details
Freund, Daniel, Thodoris Lykouris, Elisabeth Paulson, Bradley Sturt, and Wentao Weng. "Group Fairness in Dynamic Refugee Assignment." Harvard Business School Working Paper, No. 23-047, February 2023.
- 18 Oct 2022
- Research & Ideas
When Bias Creeps into AI, Managers Can Stop It by Asking the Right Questions
can amplify bias. Some companies try to address the issue by making sure that their algorithms don’t use data on protected characteristics such as race or gender. Yet, eliminating factors like race from an... View Details
Keywords: by Rachel Layne
- Article
How to Use Heuristics for Differential Privacy
By: Seth Neel, Aaron Leon Roth and Zhiwei Steven Wu
We develop theory for using heuristics to solve computationally hard problems in differential privacy. Heuristic approaches have enjoyed tremendous success in machine learning, for which performance can be empirically evaluated. However, privacy guarantees cannot be... View Details
Neel, Seth, Aaron Leon Roth, and Zhiwei Steven Wu. "How to Use Heuristics for Differential Privacy." Proceedings of the IEEE Annual Symposium on Foundations of Computer Science (FOCS) 60th (2019).